Show More
Commit Description:
Add timers for Simulation and various engines...
Commit Description:
Add timers for Simulation and various engines Starting to add additional timers for different stages of the process of updating in order to get more insight into what is slowing it down. The update takes 9ms, which is much longer than it used to. Engine-specific timers are coming later.
File last commit:
Show/Diff file:
Action:
FNA/src/Curve.cs
387 lines | 9.7 KiB | text/x-csharp | CSharpLexer
#region License
/* FNA - XNA4 Reimplementation for Desktop Platforms
* Copyright 2009-2020 Ethan Lee and the MonoGame Team
*
* Released under the Microsoft Public License.
* See LICENSE for details.
*/
/* Derived from code by the Mono.Xna Team (Copyright 2006).
* Released under the MIT License. See monoxna.LICENSE for details.
*/
#endregion
#region Using Statements
using System;
#endregion
namespace Microsoft.Xna.Framework
{
/// <summary>
/// Contains a collection of <see cref="CurveKey"/> points in 2D space and provides methods for evaluating features of the curve they define.
/// </summary>
[Serializable]
public class Curve
{
#region Public Properties
/// <summary>
/// Returns <c>true</c> if this curve is constant (has zero or one points); <c>false</c> otherwise.
/// </summary>
public bool IsConstant
{
get
{
return Keys.Count <= 1;
}
}
/// <summary>
/// The collection of curve keys.
/// </summary>
public CurveKeyCollection Keys
{
get;
private set;
}
/// <summary>
/// Defines how to handle weighting values that are greater than the last control point in the curve.
/// </summary>
public CurveLoopType PostLoop
{
get;
set;
}
/// <summary>
/// Defines how to handle weighting values that are less than the first control point in the curve.
/// </summary>
public CurveLoopType PreLoop
{
get;
set;
}
#endregion
#region Public Constructors
/// <summary>
/// Constructs a curve.
/// </summary>
public Curve()
{
Keys = new CurveKeyCollection();
}
#endregion
#region Private Constructors
private Curve(CurveKeyCollection keys)
{
Keys = keys;
}
#endregion
#region Public Methods
/// <summary>
/// Creates a copy of this curve.
/// </summary>
/// <returns>A copy of this curve.</returns>
public Curve Clone()
{
Curve curve = new Curve(Keys.Clone());
curve.PreLoop = PreLoop;
curve.PostLoop = PostLoop;
return curve;
}
/// <summary>
/// Evaluate the value at a position of this <see cref="Curve"/>.
/// </summary>
/// <param name="position">The position on this <see cref="Curve"/>.</param>
/// <returns>Value at the position on this <see cref="Curve"/>.</returns>
public float Evaluate(float position)
{
if (Keys.Count == 0)
{
return 0.0f;
}
if (Keys.Count == 1)
{
return Keys[0].Value;
}
CurveKey first = Keys[0];
CurveKey last = Keys[Keys.Count - 1];
if (position < first.Position)
{
switch (this.PreLoop)
{
case CurveLoopType.Constant:
return first.Value;
case CurveLoopType.Linear:
// Linear y = a*x +b with a tangent of last point.
return first.Value - first.TangentIn * (first.Position - position);
case CurveLoopType.Cycle:
// Start -> end / start -> end...
int cycle = GetNumberOfCycle(position);
float virtualPos = position - (cycle * (last.Position - first.Position));
return GetCurvePosition(virtualPos);
case CurveLoopType.CycleOffset:
/* Make the curve continue (with no step) so must up
* the curve each cycle of delta(value).
*/
cycle = GetNumberOfCycle(position);
virtualPos = position - (cycle * (last.Position - first.Position));
return (GetCurvePosition(virtualPos) + cycle * (last.Value - first.Value));
case CurveLoopType.Oscillate:
/* Go back on curve from end and target start
* Start-> end / end -> start...
*/
cycle = GetNumberOfCycle(position);
if (0 == cycle % 2f)
{
virtualPos = position - (cycle * (last.Position - first.Position));
}
else
{
virtualPos = last.Position - position + first.Position + (cycle * (last.Position - first.Position));
}
return GetCurvePosition(virtualPos);
}
}
else if (position > last.Position)
{
int cycle;
switch (this.PostLoop)
{
case CurveLoopType.Constant:
return last.Value;
case CurveLoopType.Linear:
// Linear y = a*x +b with a tangent of last point.
return last.Value + first.TangentOut * (position - last.Position);
case CurveLoopType.Cycle:
// Start -> end / start -> end...
cycle = GetNumberOfCycle(position);
float virtualPos = position - (cycle * (last.Position - first.Position));
return GetCurvePosition(virtualPos);
case CurveLoopType.CycleOffset:
/* Make the curve continue (with no step) so must up
* the curve each cycle of delta(value).
*/
cycle = GetNumberOfCycle(position);
virtualPos = position - (cycle * (last.Position - first.Position));
return (GetCurvePosition(virtualPos) + cycle * (last.Value - first.Value));
case CurveLoopType.Oscillate:
/* Go back on curve from end and target start.
* Start-> end / end -> start...
*/
cycle = GetNumberOfCycle(position);
virtualPos = position - (cycle * (last.Position - first.Position));
if (0 == cycle % 2f)
{
virtualPos = position - (cycle * (last.Position - first.Position));
}
else
{
virtualPos =
last.Position - position + first.Position +
(cycle * (last.Position - first.Position)
);
}
return GetCurvePosition(virtualPos);
}
}
// In curve.
return GetCurvePosition(position);
}
/// <summary>
/// Computes tangents for all keys in the collection.
/// </summary>
/// <param name="tangentType">The tangent type for both in and out.</param>
public void ComputeTangents(CurveTangent tangentType)
{
ComputeTangents(tangentType, tangentType);
}
/// <summary>
/// Computes tangents for all keys in the collection.
/// </summary>
/// <param name="tangentInType">The tangent in-type. <see cref="CurveKey.TangentIn"/> for more details.</param>
/// <param name="tangentOutType">The tangent out-type. <see cref="CurveKey.TangentOut"/> for more details.</param>
public void ComputeTangents(CurveTangent tangentInType, CurveTangent tangentOutType)
{
for (int i = 0; i < Keys.Count; i += 1)
{
ComputeTangent(i, tangentInType, tangentOutType);
}
}
/// <summary>
/// Computes tangent for the specific key in the collection.
/// </summary>
/// <param name="keyIndex">The index of a key in the collection.</param>
/// <param name="tangentType">The tangent type for both in and out.</param>
public void ComputeTangent(int keyIndex, CurveTangent tangentType)
{
ComputeTangent(keyIndex, tangentType, tangentType);
}
/// <summary>
/// Computes tangent for the specific key in the collection.
/// </summary>
/// <param name="keyIndex">The index of key in the collection.</param>
/// <param name="tangentInType">The tangent in-type. <see cref="CurveKey.TangentIn"/> for more details.</param>
/// <param name="tangentOutType">The tangent out-type. <see cref="CurveKey.TangentOut"/> for more details.</param>
public void ComputeTangent(
int keyIndex,
CurveTangent tangentInType,
CurveTangent tangentOutType
) {
// See http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.curvetangent.aspx
CurveKey key = Keys[keyIndex];
float p0, p, p1;
p0 = p = p1 = key.Position;
float v0, v, v1;
v0 = v = v1 = key.Value;
if (keyIndex > 0)
{
p0 = Keys[keyIndex - 1].Position;
v0 = Keys[keyIndex - 1].Value;
}
if (keyIndex < Keys.Count-1)
{
p1 = Keys[keyIndex + 1].Position;
v1 = Keys[keyIndex + 1].Value;
}
switch (tangentInType)
{
case CurveTangent.Flat:
key.TangentIn = 0;
break;
case CurveTangent.Linear:
key.TangentIn = v - v0;
break;
case CurveTangent.Smooth:
float pn = p1 - p0;
if (MathHelper.WithinEpsilon(pn, 0.0f))
{
key.TangentIn = 0;
}
else
{
key.TangentIn = (v1 - v0) * ((p - p0) / pn);
}
break;
}
switch (tangentOutType)
{
case CurveTangent.Flat:
key.TangentOut = 0;
break;
case CurveTangent.Linear:
key.TangentOut = v1 - v;
break;
case CurveTangent.Smooth:
float pn = p1 - p0;
if (Math.Abs(pn) < float.Epsilon)
{
key.TangentOut = 0;
}
else
{
key.TangentOut = (v1 - v0) * ((p1 - p) / pn);
}
break;
}
}
#endregion
#region Private Methods
private int GetNumberOfCycle(float position)
{
float cycle = (position - Keys[0].Position) /
(Keys[Keys.Count - 1].Position - Keys[0].Position);
if (cycle < 0f)
{
cycle -= 1;
}
return (int) cycle;
}
private float GetCurvePosition(float position)
{
// Only for position in curve.
CurveKey prev = Keys[0];
CurveKey next;
for (int i = 1; i < Keys.Count; i += 1)
{
next = Keys[i];
if (next.Position >= position)
{
if (prev.Continuity == CurveContinuity.Step)
{
if (position >= 1f)
{
return next.Value;
}
return prev.Value;
}
// To have t in [0,1]
float t = (
(position - prev.Position) /
(next.Position - prev.Position)
);
float ts = t * t;
float tss = ts * t;
/* After a lot of search on internet I have found all about
* spline function and bezier (phi'sss ancien) but finally
* used hermite curve:
* http://en.wikipedia.org/wiki/Cubic_Hermite_spline
* P(t) = (2*t^3 - 3t^2 + 1)*P0 + (t^3 - 2t^2 + t)m0 +
* (-2t^3 + 3t^2)P1 + (t^3-t^2)m1
* with P0.value = prev.value , m0 = prev.tangentOut,
* P1= next.value, m1 = next.TangentIn.
*/
return (
(2 * tss - 3 * ts + 1f) * prev.Value +
(tss - 2 * ts + t) * prev.TangentOut +
(3 * ts - 2 * tss) * next.Value +
(tss - ts) * next.TangentIn
);
}
prev = next;
}
return 0f;
}
#endregion
}
}