Commit Description:
Various UI improvements.
Commit Description:
Various UI improvements.
File last commit:
Show/Diff file:
Action:
FNA/lib/FAudio/src/F3DAudio.c
1563 lines | 46.5 KiB | text/x-c | CLexer
/* FAudio - XAudio Reimplementation for FNA
*
* Copyright (c) 2011-2020 Ethan Lee, Luigi Auriemma, and the MonoGame Team
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software in a
* product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
* Ethan "flibitijibibo" Lee <flibitijibibo@flibitijibibo.com>
*
*/
#include "F3DAudio.h"
#include "FAudio_internal.h"
#include <math.h> /* ONLY USE THIS FOR isnan! */
#include <float.h> /* ONLY USE THIS FOR FLT_MIN/FLT_MAX! */
/* VS2010 doesn't define isnan (which is C99), so here it is. */
#if defined(_MSC_VER) && !defined(isnan)
#define isnan(x) _isnan(x)
#endif
/* UTILITY MACROS */
#define PARAM_CHECK_OK 1
#define PARAM_CHECK_FAIL (!PARAM_CHECK_OK)
#define ARRAY_COUNT(x) (sizeof(x) / sizeof(x[0]))
#define LERP(a, x, y) ((1.0f - a) * x + a * y)
/* PARAMETER CHECK MACROS */
#define PARAM_CHECK(cond, msg) FAudio_assert(cond && msg)
#define POINTER_CHECK(p) \
PARAM_CHECK(p != NULL, "Pointer " #p " must be != NULL")
#define FLOAT_BETWEEN_CHECK(f, a, b) \
PARAM_CHECK(f >= a, "Value" #f " is too low"); \
PARAM_CHECK(f <= b, "Value" #f " is too big")
/* Quote X3DAUDIO docs:
* "To be considered orthonormal, a pair of vectors must have a magnitude of
* 1 +- 1x10-5 and a dot product of 0 +- 1x10-5."
* VECTOR_NORMAL_CHECK verifies that vectors are normal (i.e. have norm 1 +- 1x10-5)
* VECTOR_BASE_CHECK verifies that a pair of vectors are orthogonal (i.e. their dot
* product is 0 +- 1x10-5)
*/
/* TODO: Switch to square length (to save CPU) */
#define VECTOR_NORMAL_CHECK(v) \
PARAM_CHECK( \
FAudio_fabsf(VectorLength(v) - 1.0f) <= 1e-5f, \
"Vector " #v " isn't normal" \
)
#define VECTOR_BASE_CHECK(u, v) \
PARAM_CHECK( \
FAudio_fabsf(VectorDot(u, v)) <= 1e-5f, \
"Vector u and v have non-negligible dot product" \
)
/*************************************
* F3DAudioInitialize Implementation *
*************************************/
/* F3DAUDIO_HANDLE Structure */
#define SPEAKERMASK(Instance) *((uint32_t*) &Instance[0])
#define SPEAKERCOUNT(Instance) *((uint32_t*) &Instance[4])
#define SPEAKER_LF_INDEX(Instance) *((uint32_t*) &Instance[8])
#define SPEEDOFSOUND(Instance) *((float*) &Instance[12])
#define SPEEDOFSOUNDEPSILON(Instance) *((float*) &Instance[16])
/* Export for unit tests */
F3DAUDIOAPI uint32_t F3DAudioCheckInitParams(
uint32_t SpeakerChannelMask,
float SpeedOfSound,
F3DAUDIO_HANDLE instance
) {
const uint32_t kAllowedSpeakerMasks[] =
{
SPEAKER_MONO,
SPEAKER_STEREO,
SPEAKER_2POINT1,
SPEAKER_QUAD,
SPEAKER_SURROUND,
SPEAKER_4POINT1,
SPEAKER_5POINT1,
SPEAKER_5POINT1_SURROUND,
SPEAKER_7POINT1,
SPEAKER_7POINT1_SURROUND,
};
uint8_t speakerMaskIsValid = 0;
uint32_t i;
POINTER_CHECK(instance);
for (i = 0; i < ARRAY_COUNT(kAllowedSpeakerMasks); i += 1)
{
if (SpeakerChannelMask == kAllowedSpeakerMasks[i])
{
speakerMaskIsValid = 1;
break;
}
}
/* The docs don't clearly say it, but the debug dll does check that
* we're exactly in one of the allowed speaker configurations.
* -Adrien
*/
PARAM_CHECK(
speakerMaskIsValid == 1,
"SpeakerChannelMask is invalid. Needs to be one of"
" MONO, STEREO, QUAD, 2POINT1, 4POINT1, 5POINT1, 7POINT1,"
" SURROUND, 5POINT1_SURROUND, or 7POINT1_SURROUND."
);
PARAM_CHECK(SpeedOfSound >= FLT_MIN, "SpeedOfSound needs to be >= FLT_MIN");
return PARAM_CHECK_OK;
}
void F3DAudioInitialize(
uint32_t SpeakerChannelMask,
float SpeedOfSound,
F3DAUDIO_HANDLE Instance
) {
F3DAudioInitialize8(SpeakerChannelMask, SpeedOfSound, Instance);
}
uint32_t F3DAudioInitialize8(
uint32_t SpeakerChannelMask,
float SpeedOfSound,
F3DAUDIO_HANDLE Instance
) {
union
{
float f;
uint32_t i;
} epsilonHack;
uint32_t speakerCount = 0;
if (!F3DAudioCheckInitParams(SpeakerChannelMask, SpeedOfSound, Instance))
{
return FAUDIO_E_INVALID_CALL;
}
SPEAKERMASK(Instance) = SpeakerChannelMask;
SPEEDOFSOUND(Instance) = SpeedOfSound;
/* "Convert" raw float to int... */
epsilonHack.f = SpeedOfSound;
/* ... Subtract epsilon value... */
epsilonHack.i -= 1;
/* ... Convert back to float. */
SPEEDOFSOUNDEPSILON(Instance) = epsilonHack.f;
SPEAKER_LF_INDEX(Instance) = 0xFFFFFFFF;
if (SpeakerChannelMask & SPEAKER_LOW_FREQUENCY)
{
if (SpeakerChannelMask & SPEAKER_FRONT_CENTER)
{
SPEAKER_LF_INDEX(Instance) = 3;
}
else
{
SPEAKER_LF_INDEX(Instance) = 2;
}
}
while (SpeakerChannelMask)
{
speakerCount += 1;
SpeakerChannelMask &= SpeakerChannelMask - 1;
}
SPEAKERCOUNT(Instance) = speakerCount;
return 0;
}
/************************************
* F3DAudioCalculate Implementation *
************************************/
/* VECTOR UTILITIES */
static inline F3DAUDIO_VECTOR Vec(float x, float y, float z)
{
F3DAUDIO_VECTOR res;
res.x = x;
res.y = y;
res.z = z;
return res;
}
#define VectorAdd(u, v) Vec(u.x + v.x, u.y + v.y, u.z + v.z)
#define VectorSub(u, v) Vec(u.x - v.x, u.y - v.y, u.z - v.z)
#define VectorScale(u, s) Vec(u.x * s, u.y * s, u.z * s)
#define VectorCross(u, v) Vec( \
(u.y * v.z) - (u.z * v.y), \
(u.z * v.x) - (u.x * v.z), \
(u.x * v.y) - (u.y * v.x) \
)
#define VectorLength(v) FAudio_sqrtf( \
(v.x * v.x) + (v.y * v.y) + (v.z * v.z) \
)
#define VectorDot(u, v) ((u.x * v.x) + (u.y * v.y) + (u.z * v.z))
/* This structure represent a tuple of vectors that form a left-handed basis.
* That is, all vectors are normal, orthogonal to each other, and taken in the
* order front, right, top they follow the left-hand rule.
* (https://en.wikipedia.org/wiki/Right-hand_rule)
*/
typedef struct F3DAUDIO_BASIS
{
F3DAUDIO_VECTOR front;
F3DAUDIO_VECTOR right;
F3DAUDIO_VECTOR top;
} F3DAUDIO_BASIS;
/* CHECK UTILITY FUNCTIONS */
static inline uint8_t CheckCone(F3DAUDIO_CONE *pCone)
{
if (!pCone)
{
return PARAM_CHECK_OK;
}
FLOAT_BETWEEN_CHECK(pCone->InnerAngle, 0.0f, F3DAUDIO_2PI);
FLOAT_BETWEEN_CHECK(pCone->OuterAngle, pCone->InnerAngle, F3DAUDIO_2PI);
FLOAT_BETWEEN_CHECK(pCone->InnerVolume, 0.0f, 2.0f);
FLOAT_BETWEEN_CHECK(pCone->OuterVolume, 0.0f, 2.0f);
FLOAT_BETWEEN_CHECK(pCone->InnerLPF, 0.0f, 1.0f);
FLOAT_BETWEEN_CHECK(pCone->OuterLPF, 0.0f, 1.0f);
FLOAT_BETWEEN_CHECK(pCone->InnerReverb, 0.0f, 2.0f);
FLOAT_BETWEEN_CHECK(pCone->OuterReverb, 0.0f, 2.0f);
return PARAM_CHECK_OK;
}
static inline uint8_t CheckCurve(F3DAUDIO_DISTANCE_CURVE *pCurve)
{
F3DAUDIO_DISTANCE_CURVE_POINT *points;
uint32_t i;
if (!pCurve)
{
return PARAM_CHECK_OK;
}
points = pCurve->pPoints;
POINTER_CHECK(points);
PARAM_CHECK(pCurve->PointCount >= 2, "Invalid number of points for curve");
for (i = 0; i < pCurve->PointCount; i += 1)
{
FLOAT_BETWEEN_CHECK(points[i].Distance, 0.0f, 1.0f);
}
PARAM_CHECK(
points[0].Distance == 0.0f,
"First point in the curve must be at distance 0.0f"
);
PARAM_CHECK(
points[pCurve->PointCount - 1].Distance == 1.0f,
"Last point in the curve must be at distance 1.0f"
);
for (i = 0; i < (pCurve->PointCount - 1); i += 1)
{
PARAM_CHECK(
points[i].Distance < points[i + 1].Distance,
"Curve points must be in strict ascending order"
);
}
return PARAM_CHECK_OK;
}
/* Export for unit tests */
F3DAUDIOAPI uint8_t F3DAudioCheckCalculateParams(
const F3DAUDIO_HANDLE Instance,
const F3DAUDIO_LISTENER *pListener,
const F3DAUDIO_EMITTER *pEmitter,
uint32_t Flags,
F3DAUDIO_DSP_SETTINGS *pDSPSettings
) {
uint32_t i, ChannelCount;
POINTER_CHECK(Instance);
POINTER_CHECK(pListener);
POINTER_CHECK(pEmitter);
POINTER_CHECK(pDSPSettings);
if (Flags & F3DAUDIO_CALCULATE_MATRIX)
{
POINTER_CHECK(pDSPSettings->pMatrixCoefficients);
}
if (Flags & F3DAUDIO_CALCULATE_ZEROCENTER)
{
const uint32_t isCalculateMatrix = (Flags & F3DAUDIO_CALCULATE_MATRIX);
const uint32_t hasCenter = SPEAKERMASK(Instance) & SPEAKER_FRONT_CENTER;
PARAM_CHECK(
isCalculateMatrix && hasCenter,
"F3DAUDIO_CALCULATE_ZEROCENTER is only valid for matrix"
" calculations with an output format that has a center channel"
);
}
if (Flags & F3DAUDIO_CALCULATE_REDIRECT_TO_LFE)
{
const uint32_t isCalculateMatrix = (Flags & F3DAUDIO_CALCULATE_MATRIX);
const uint32_t hasLF = SPEAKERMASK(Instance) & SPEAKER_LOW_FREQUENCY;
PARAM_CHECK(
isCalculateMatrix && hasLF,
"F3DAUDIO_CALCULATE_REDIRECT_TO_LFE is only valid for matrix"
" calculations with an output format that has a low-frequency"
" channel"
);
}
ChannelCount = SPEAKERCOUNT(Instance);
PARAM_CHECK(
pDSPSettings->DstChannelCount == ChannelCount,
"Invalid channel count, DSP settings and speaker configuration must agree"
);
PARAM_CHECK(
pDSPSettings->SrcChannelCount == pEmitter->ChannelCount,
"Invalid channel count, DSP settings and emitter must agree"
);
if (pListener->pCone)
{
PARAM_CHECK(
CheckCone(pListener->pCone) == PARAM_CHECK_OK,
"Invalid listener cone"
);
}
VECTOR_NORMAL_CHECK(pListener->OrientFront);
VECTOR_NORMAL_CHECK(pListener->OrientTop);
VECTOR_BASE_CHECK(pListener->OrientFront, pListener->OrientTop);
if (pEmitter->pCone)
{
VECTOR_NORMAL_CHECK(pEmitter->OrientFront);
PARAM_CHECK(
CheckCone(pEmitter->pCone) == PARAM_CHECK_OK,
"Invalid emitter cone"
);
}
else if (Flags & F3DAUDIO_CALCULATE_EMITTER_ANGLE)
{
VECTOR_NORMAL_CHECK(pEmitter->OrientFront);
}
if (pEmitter->ChannelCount > 1)
{
/* Only used for multi-channel emitters */
VECTOR_NORMAL_CHECK(pEmitter->OrientFront);
VECTOR_NORMAL_CHECK(pEmitter->OrientTop);
VECTOR_BASE_CHECK(pEmitter->OrientFront, pEmitter->OrientTop);
}
FLOAT_BETWEEN_CHECK(pEmitter->InnerRadius, 0.0f, FLT_MAX);
FLOAT_BETWEEN_CHECK(pEmitter->InnerRadiusAngle, 0.0f, F3DAUDIO_2PI / 4.0f);
PARAM_CHECK(
pEmitter->ChannelCount > 0,
"Invalid channel count for emitter"
);
PARAM_CHECK(
pEmitter->ChannelRadius >= 0.0f,
"Invalid channel radius for emitter"
);
if (pEmitter->ChannelCount > 1)
{
PARAM_CHECK(
pEmitter->pChannelAzimuths != NULL,
"Invalid channel azimuths for multi-channel emitter"
);
if (pEmitter->pChannelAzimuths)
{
for (i = 0; i < pEmitter->ChannelCount; i += 1)
{
float currentAzimuth = pEmitter->pChannelAzimuths[i];
FLOAT_BETWEEN_CHECK(currentAzimuth, 0.0f, F3DAUDIO_2PI);
if (currentAzimuth == F3DAUDIO_2PI)
{
PARAM_CHECK(
!(Flags & F3DAUDIO_CALCULATE_REDIRECT_TO_LFE),
"F3DAUDIO_CALCULATE_REDIRECT_TO_LFE valid only for"
" matrix calculations with emitters that have no LFE"
" channel"
);
}
}
}
}
FLOAT_BETWEEN_CHECK(pEmitter->CurveDistanceScaler, FLT_MIN, FLT_MAX);
FLOAT_BETWEEN_CHECK(pEmitter->DopplerScaler, 0.0f, FLT_MAX);
PARAM_CHECK(
CheckCurve(pEmitter->pVolumeCurve) == PARAM_CHECK_OK,
"Invalid Volume curve"
);
PARAM_CHECK(
CheckCurve(pEmitter->pLFECurve) == PARAM_CHECK_OK,
"Invalid LFE curve"
);
PARAM_CHECK(
CheckCurve(pEmitter->pLPFDirectCurve) == PARAM_CHECK_OK,
"Invalid LPFDirect curve"
);
PARAM_CHECK(
CheckCurve(pEmitter->pLPFReverbCurve) == PARAM_CHECK_OK,
"Invalid LPFReverb curve"
);
PARAM_CHECK(
CheckCurve(pEmitter->pReverbCurve) == PARAM_CHECK_OK,
"Invalid Reverb curve"
);
return PARAM_CHECK_OK;
}
/*
* MATRIX CALCULATION
*/
/* This function computes the distance either according to a curve if pCurve
* isn't NULL, or according to the inverse distance law 1/d otherwise.
*/
static inline float ComputeDistanceAttenuation(
float normalizedDistance,
F3DAUDIO_DISTANCE_CURVE *pCurve
) {
float res;
float alpha;
uint32_t n_points;
size_t i;
if (pCurve)
{
F3DAUDIO_DISTANCE_CURVE_POINT* points = pCurve->pPoints;
n_points = pCurve->PointCount;
/* By definition, the first point in the curve must be 0.0f
* -Adrien
*/
/* We advance i up until our normalizedDistance lies between the distances of
* the i_th and (i-1)_th points, or we reach the last point.
*/
for (i = 1; (i < n_points) && (normalizedDistance >= points[i].Distance); i += 1);
if (i == n_points)
{
/* We've reached the last point, so we use its value directly.
* Quote X3DAUDIO docs:
* "If an emitter moves beyond a distance of (CurveDistanceScaler × 1.0f),
* the last point on the curve is used to compute the volume output level."
*/
res = points[n_points - 1].DSPSetting;
}
else
{
/* We're between two points: the distance attenuation is the linear interpolation of the DSPSetting
* values defined by our points, according to the distance.
*/
alpha = (points[i].Distance - normalizedDistance) / (points[i].Distance - points[i - 1].Distance);
res = LERP(alpha, points[i].DSPSetting, points[i - 1].DSPSetting);
}
}
else
{
res = 1.0f;
if (normalizedDistance >= 1.0f)
{
res /= normalizedDistance;
}
}
return res;
}
static inline float ComputeConeParameter(
float distance,
float angle,
float innerAngle,
float outerAngle,
float innerParam,
float outerParam
) {
/* When computing whether a point lies inside a cone, X3DAUDIO first determines
* whether the point is close enough to the apex of the cone.
* If it is, the innerParam is used.
* The following constant is the one that is used for this distance check;
* It is an approximation, found by manual binary search.
* TODO: find the exact value of the constant via automated binary search. */
#define CONE_NULL_DISTANCE_TOLERANCE 1e-7
float halfInnerAngle, halfOuterAngle, alpha;
/* Quote X3DAudio.h:
* "Set both cone angles to 0 or X3DAUDIO_2PI for omnidirectionality using
* only the outer or inner values respectively."
*/
if (innerAngle == 0.0f && outerAngle == 0.0f)
{
return outerParam;
}
if (innerAngle == F3DAUDIO_2PI && outerAngle == F3DAUDIO_2PI)
{
return innerParam;
}
/* If we're within the inner angle, or close enough to the apex, we use
* the innerParam. */
halfInnerAngle = innerAngle / 2.0f;
if (distance <= CONE_NULL_DISTANCE_TOLERANCE || angle <= halfInnerAngle)
{
return innerParam;
}
/* If we're between the inner angle and the outer angle, we must use
* some interpolation of the innerParam and outerParam according to the
* distance between our angle and the inner and outer angles.
*/
halfOuterAngle = outerAngle / 2.0f;
if (angle <= halfOuterAngle)
{
alpha = (angle - halfInnerAngle) / (halfOuterAngle - halfInnerAngle);
/* Sooo... This is awkward. MSDN doesn't say anything, but
* X3DAudio.h says that this should be lerped. However in
* practice the behaviour of X3DAudio isn't a lerp at all. It's
* easy to see with big (InnerAngle / OuterAngle) values. If we
* want accurate emulation, we'll need to either find what
* formula they use, or use a more advanced interpolation, like
* tricubic.
*
* TODO: HIGH_ACCURACY version.
* -Adrien
*/
return LERP(alpha, innerParam, outerParam);
}
/* Otherwise, we're outside the outer angle, so we just return the outer param. */
return outerParam;
}
/* X3DAudio.h declares something like this, but the default (if emitter is NULL)
* volume curve is a *computed* inverse law, while on the other hand a curve
* leads to a piecewise linear function. So a "default curve" like this is
* pointless, not sure what X3DAudio does with it...
* -Adrien
*/
#if 0
static F3DAUDIO_DISTANCE_CURVE_POINT DefaultVolumeCurvePoints[] =
{
{ 0.0f, 1.0f },
{ 1.0f, 0.0f }
};
static F3DAUDIO_DISTANCE_CURVE DefaultVolumeCurve =
{
DefaultVolumeCurvePoints,
ARRAY_COUNT(DefaultVolumeCurvePoints)
};
#endif
/* Here we declare the azimuths of every speaker for every speaker
* configuration, ordered by increasing angle, as well as the index to which
* they map in the final matrix for their respective configuration. It had to be
* reverse engineered by looking at the data from various X3DAudioCalculate()
* matrix results for the various speaker configurations; *in particular*, the
* azimuths are different from the ones in F3DAudio.h (and X3DAudio.h) for
* SPEAKER_STEREO (which is declared has having front L and R speakers in the
* bit mask, but in fact has L and R *side* speakers). LF speakers are
* deliberately not included in the SpeakerInfo list, rather, we store the index
* into a separate field (with a -1 sentinel value if it has no LF speaker).
* -Adrien
*/
typedef struct
{
float azimuth;
uint32_t matrixIdx;
} SpeakerInfo;
typedef struct
{
uint32_t configMask;
const SpeakerInfo *speakers;
/* Not strictly necessary because it can be inferred from the
* SpeakerCount field of the F3DAUDIO_HANDLE, but makes code much
* cleaner and less error prone
*/
uint32_t numNonLFSpeakers;
int32_t LFSpeakerIdx;
} ConfigInfo;
/* It is absolutely necessary that these are stored in increasing, *positive*
* azimuth order (i.e. all angles between [0; 2PI]), as we'll do a linear
* interval search inside FindSpeakerAzimuths.
* -Adrien
*/
#define SPEAKER_AZIMUTH_CENTER 0.0f
#define SPEAKER_AZIMUTH_FRONT_RIGHT_OF_CENTER (F3DAUDIO_PI * 1.0f / 8.0f)
#define SPEAKER_AZIMUTH_FRONT_RIGHT (F3DAUDIO_PI * 1.0f / 4.0f)
#define SPEAKER_AZIMUTH_SIDE_RIGHT (F3DAUDIO_PI * 1.0f / 2.0f)
#define SPEAKER_AZIMUTH_BACK_RIGHT (F3DAUDIO_PI * 3.0f / 4.0f)
#define SPEAKER_AZIMUTH_BACK_CENTER F3DAUDIO_PI
#define SPEAKER_AZIMUTH_BACK_LEFT (F3DAUDIO_PI * 5.0f / 4.0f)
#define SPEAKER_AZIMUTH_SIDE_LEFT (F3DAUDIO_PI * 3.0f / 2.0f)
#define SPEAKER_AZIMUTH_FRONT_LEFT (F3DAUDIO_PI * 7.0f / 4.0f)
#define SPEAKER_AZIMUTH_FRONT_LEFT_OF_CENTER (F3DAUDIO_PI * 15.0f / 8.0f)
const SpeakerInfo kMonoConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_CENTER, 0 },
};
const SpeakerInfo kStereoConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_SIDE_RIGHT, 1 },
{ SPEAKER_AZIMUTH_SIDE_LEFT, 0 },
};
const SpeakerInfo k2Point1ConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_SIDE_RIGHT, 1 },
{ SPEAKER_AZIMUTH_SIDE_LEFT, 0 },
};
const SpeakerInfo kSurroundConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_CENTER, 2 },
{ SPEAKER_AZIMUTH_FRONT_RIGHT, 1 },
{ SPEAKER_AZIMUTH_BACK_CENTER, 3 },
{ SPEAKER_AZIMUTH_FRONT_LEFT, 0 },
};
const SpeakerInfo kQuadConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_FRONT_RIGHT, 1 },
{ SPEAKER_AZIMUTH_BACK_RIGHT, 3 },
{ SPEAKER_AZIMUTH_BACK_LEFT, 2 },
{ SPEAKER_AZIMUTH_FRONT_LEFT, 0 },
};
const SpeakerInfo k4Point1ConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_FRONT_RIGHT, 1 },
{ SPEAKER_AZIMUTH_BACK_RIGHT, 4 },
{ SPEAKER_AZIMUTH_BACK_LEFT, 3 },
{ SPEAKER_AZIMUTH_FRONT_LEFT, 0 },
};
const SpeakerInfo k5Point1ConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_CENTER, 2 },
{ SPEAKER_AZIMUTH_FRONT_RIGHT, 1 },
{ SPEAKER_AZIMUTH_BACK_RIGHT, 5 },
{ SPEAKER_AZIMUTH_BACK_LEFT, 4 },
{ SPEAKER_AZIMUTH_FRONT_LEFT, 0 },
};
const SpeakerInfo k7Point1ConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_CENTER, 2 },
{ SPEAKER_AZIMUTH_FRONT_RIGHT_OF_CENTER, 7 },
{ SPEAKER_AZIMUTH_FRONT_RIGHT, 1 },
{ SPEAKER_AZIMUTH_BACK_RIGHT, 5 },
{ SPEAKER_AZIMUTH_BACK_LEFT, 4 },
{ SPEAKER_AZIMUTH_FRONT_LEFT, 0 },
{ SPEAKER_AZIMUTH_FRONT_LEFT_OF_CENTER, 6 },
};
const SpeakerInfo k5Point1SurroundConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_CENTER, 2 },
{ SPEAKER_AZIMUTH_FRONT_RIGHT, 1 },
{ SPEAKER_AZIMUTH_SIDE_RIGHT, 5 },
{ SPEAKER_AZIMUTH_SIDE_LEFT, 4 },
{ SPEAKER_AZIMUTH_FRONT_LEFT, 0 },
};
const SpeakerInfo k7Point1SurroundConfigSpeakers[] =
{
{ SPEAKER_AZIMUTH_CENTER, 2 },
{ SPEAKER_AZIMUTH_FRONT_RIGHT, 1 },
{ SPEAKER_AZIMUTH_SIDE_RIGHT, 7 },
{ SPEAKER_AZIMUTH_BACK_RIGHT, 5 },
{ SPEAKER_AZIMUTH_BACK_LEFT, 4 },
{ SPEAKER_AZIMUTH_SIDE_LEFT, 6 },
{ SPEAKER_AZIMUTH_FRONT_LEFT, 0 },
};
/* With that organization, the index of the LF speaker into the matrix array
* strangely looks *exactly* like the mystery field in the F3DAUDIO_HANDLE!!
* We're keeping a separate field within ConfigInfo because it makes the code
* much cleaner, though.
* -Adrien
*/
const ConfigInfo kSpeakersConfigInfo[] =
{
{ SPEAKER_MONO, kMonoConfigSpeakers, ARRAY_COUNT(kMonoConfigSpeakers), -1 },
{ SPEAKER_STEREO, kStereoConfigSpeakers, ARRAY_COUNT(kStereoConfigSpeakers), -1 },
{ SPEAKER_2POINT1, k2Point1ConfigSpeakers, ARRAY_COUNT(k2Point1ConfigSpeakers), 2 },
{ SPEAKER_SURROUND, kSurroundConfigSpeakers, ARRAY_COUNT(kSurroundConfigSpeakers), -1 },
{ SPEAKER_QUAD, kQuadConfigSpeakers, ARRAY_COUNT(kQuadConfigSpeakers), -1 },
{ SPEAKER_4POINT1, k4Point1ConfigSpeakers, ARRAY_COUNT(k4Point1ConfigSpeakers), 2 },
{ SPEAKER_5POINT1, k5Point1ConfigSpeakers, ARRAY_COUNT(k5Point1ConfigSpeakers), 3 },
{ SPEAKER_7POINT1, k7Point1ConfigSpeakers, ARRAY_COUNT(k7Point1ConfigSpeakers), 3 },
{ SPEAKER_5POINT1_SURROUND, k5Point1SurroundConfigSpeakers, ARRAY_COUNT(k5Point1SurroundConfigSpeakers), 3 },
{ SPEAKER_7POINT1_SURROUND, k7Point1SurroundConfigSpeakers, ARRAY_COUNT(k7Point1SurroundConfigSpeakers), 3 },
};
/* A simple linear search is absolutely OK for 10 elements. */
static const ConfigInfo* GetConfigInfo(uint32_t speakerConfigMask)
{
uint32_t i;
for (i = 0; i < ARRAY_COUNT(kSpeakersConfigInfo); i += 1)
{
if (kSpeakersConfigInfo[i].configMask == speakerConfigMask)
{
return &kSpeakersConfigInfo[i];
}
}
FAudio_assert(0 && "Config info not found!");
return NULL;
}
/* Given a configuration, this function finds the azimuths of the two speakers
* between which the emitter lies. All the azimuths here are relative to the
* listener's base, since that's where the speakers are defined.
*/
static inline void FindSpeakerAzimuths(
const ConfigInfo* config,
float emitterAzimuth,
uint8_t skipCenter,
const SpeakerInfo **speakerInfo
) {
uint32_t i, nexti = 0;
float a0 = 0.0f, a1 = 0.0f;
FAudio_assert(config != NULL);
/* We want to find, given an azimuth, which speakers are the closest
* ones (in terms of angle) to that azimuth.
* This is done by iterating through the list of speaker azimuths, as
* given to us by the current ConfigInfo (which stores speaker azimuths
* in increasing order of azimuth for each possible speaker configuration;
* each speaker azimuth is defined to be between 0 and 2PI by construction).
*/
for (i = 0; i < config->numNonLFSpeakers; i += 1)
{
/* a0 and a1 are the azimuths of candidate speakers */
a0 = config->speakers[i].azimuth;
nexti = (i + 1) % config->numNonLFSpeakers;
a1 = config->speakers[nexti].azimuth;
if (a0 < a1)
{
if (emitterAzimuth >= a0 && emitterAzimuth < a1)
{
break;
}
}
/* It is possible for a speaker pair to enclose the singulary at 0 == 2PI:
* consider for example the quad config, which has a front left speaker
* at 7PI/4 and a front right speaker at PI/4. In that case a0 = 7PI/4 and
* a1 = PI/4, and the way we know whether our current azimuth lies between
* that pair is by checking whether the azimuth is greather than 7PI/4 or
* whether it's less than PI/4. (By contract, currentAzimuth is always less
* than 2PI.)
*/
else
{
if (emitterAzimuth >= a0 || emitterAzimuth < a1)
{
break;
}
}
}
FAudio_assert(emitterAzimuth >= a0 || emitterAzimuth < a1);
/* skipCenter means that we don't want to use the center speaker.
* The easiest way to deal with this is to check whether either of our candidate
* speakers are the center, which always has an azimuth of 0.0. If that is the case
* we just replace it with either the previous one or the next one.
*/
if (skipCenter)
{
if (a0 == 0.0f)
{
if (i == 0)
{
i = config->numNonLFSpeakers - 1;
}
else
{
i -= 1;
}
}
else if (a1 == 0.0f)
{
nexti += 1;
if (nexti >= config->numNonLFSpeakers)
{
nexti -= config->numNonLFSpeakers;
}
}
}
speakerInfo[0] = &config->speakers[i];
speakerInfo[1] = &config->speakers[nexti];
}
/* Used to store diffusion factors */
/* See below for explanation. */
#define DIFFUSION_SPEAKERS_ALL 0
#define DIFFUSION_SPEAKERS_MATCHING 1
#define DIFFUSION_SPEAKERS_OPPOSITE 2
typedef float DiffusionSpeakerFactors[3];
/* ComputeInnerRadiusDiffusionFactors is a utility function that returns how
* energy dissipates to the speakers, given the radial distance between the
* emitter and the listener and the (optionally 0) InnerRadius distance. It
* returns 3 floats, via the diffusionFactors array, that say how much energy
* (after distance attenuation) will need to be distributed between each of the
* following cases:
*
* - SPEAKERS_ALL for all (non-LF) speakers, _INCLUDING_ the MATCHING and OPPOSITE.
* - SPEAKERS_OPPOSITE corresponds to the two speakers OPPOSITE the emitter.
* - SPEAKERS_MATCHING corresponds to the two speakers closest to the emitter.
*
* For a distance below a certain threshold (DISTANCE_EQUAL_ENERGY), all
* speakers receive equal energy.
*
* Above that, the amount that all speakers receive decreases linearly as radial
* distance increases, up until InnerRadius / 2. (If InnerRadius is null, we use
* MINIMUM_INNER_RADIUS.)
*
* At the same time, both opposite and matching speakers start to receive sound
* (in addition to the energy they receive from the aforementioned "all
* speakers" linear law) according to some unknown as of now law,
* that is currently emulated with a LERP. This is true up until InnerRadius.
*
* Above InnerRadius, only the two matching speakers receive sound.
*
* For more detail, see the "Inner Radius and Inner Radius Angle" in the
* MSDN docs for the X3DAUDIO_EMITTER structure.
* https://msdn.microsoft.com/en-us/library/windows/desktop/microsoft.directx_sdk.x3daudio.x3daudio_emitter(v=vs.85).aspx
*/
static inline void ComputeInnerRadiusDiffusionFactors(
float radialDistance,
float InnerRadius,
DiffusionSpeakerFactors diffusionFactors
) {
/* Determined experimentally; this is the midpoint value, i.e. the
* value at 0.5 for the matching speakers, used for the standard
* diffusion curve.
*
* Note: It is SUSPICIOUSLY close to 1/sqrt(2), but I haven't figured out why.
* -Adrien
*/
#define DIFFUSION_LERP_MIDPOINT_VALUE 0.707107f
/* X3DAudio always uses an InnerRadius-like behaviour (i.e. diffusing sound to more than
* a pair of speakers) even if InnerRadius is set to 0.0f.
* This constant determines the distance at which this behaviour is produced in that case. */
/* This constant was determined by manual binary search. TODO: get a more accurate version
* via an automated binary search. */
#define DIFFUSION_DISTANCE_MINIMUM_INNER_RADIUS 4e-7f
float actualInnerRadius = FAudio_max(InnerRadius, DIFFUSION_DISTANCE_MINIMUM_INNER_RADIUS);
float normalizedRadialDist;
float a, ms, os;
normalizedRadialDist = radialDistance / actualInnerRadius;
/* X3DAudio does another check for small radial distances before applying any InnerRadius-like
* behaviour. This is the constant that determines the threshold: below this distance we simply
* diffuse to all speakers equally. */
#define DIFFUSION_DISTANCE_EQUAL_ENERGY 1e-7f
if (radialDistance <= DIFFUSION_DISTANCE_EQUAL_ENERGY)
{
a = 1.0f;
ms = 0.0f;
os = 0.0f;
}
else if (normalizedRadialDist <= 0.5f)
{
/* Determined experimentally that this is indeed a linear law,
* with 100% confidence.
* -Adrien
*/
a = 1.0f - 2.0f * normalizedRadialDist;
/* Lerping here is an approximation.
* TODO: High accuracy version. Having stared at the curves long
* enough, I'm pretty sure this is a quadratic, but trying to
* polyfit with numpy didn't give nice, round polynomial
* coefficients...
* -Adrien
*/
ms = LERP(2.0f * normalizedRadialDist, 0.0f, DIFFUSION_LERP_MIDPOINT_VALUE);
os = 1.0f - a - ms;
}
else if (normalizedRadialDist <= 1.0f)
{
a = 0.0f;
/* Similarly, this is a lerp based on the midpoint value; the
* real, high-accuracy curve also looks like a quadratic.
* -Adrien
*/
ms = LERP(2.0f * (normalizedRadialDist - 0.5f), DIFFUSION_LERP_MIDPOINT_VALUE, 1.0f);
os = 1.0f - a - ms;
}
else
{
a = 0.0f;
ms = 1.0f;
os = 0.0f;
}
diffusionFactors[DIFFUSION_SPEAKERS_ALL] = a;
diffusionFactors[DIFFUSION_SPEAKERS_MATCHING] = ms;
diffusionFactors[DIFFUSION_SPEAKERS_OPPOSITE] = os;
}
/* ComputeEmitterChannelCoefficients handles the coefficients calculation for 1
* column of the matrix. It uses ComputeInnerRadiusDiffusionFactors to separate
* into three discrete cases; and for each case does the right repartition of
* the energy after attenuation to the right speakers, in particular in the
* MATCHING and OPPOSITE cases, it gives each of the two speakers found a linear
* amount of the energy, according to the angular distance between the emitter
* and the speaker azimuth.
*/
static inline void ComputeEmitterChannelCoefficients(
const ConfigInfo *curConfig,
const F3DAUDIO_BASIS *listenerBasis,
float innerRadius,
F3DAUDIO_VECTOR channelPosition,
float attenuation,
float LFEattenuation,
uint32_t flags,
uint32_t currentChannel,
uint32_t numSrcChannels,
float *pMatrixCoefficients
) {
float elevation, radialDistance;
F3DAUDIO_VECTOR projTopVec, projPlane;
uint8_t skipCenter = (flags & F3DAUDIO_CALCULATE_ZEROCENTER) ? 1 : 0;
DiffusionSpeakerFactors diffusionFactors = { 0.0f };
float x, y;
float emitterAzimuth;
float energyPerChannel;
float totalEnergy;
uint32_t nChannelsToDiffuseTo;
uint32_t iS, centerChannelIdx = -1;
const SpeakerInfo* infos[2];
float a0, a1, val;
uint32_t i0, i1;
/* We project against the listener basis' top vector to get the elevation of the
* current emitter channel position.
*/
elevation = VectorDot(listenerBasis->top, channelPosition);
/* To obtain the projection in the front-right plane of the listener's basis of the
* emitter channel position, we simply remove the projection against the top vector.
* The radial distance is then the length of the projected vector.
*/
projTopVec = VectorScale(listenerBasis->top, elevation);
projPlane = VectorSub(channelPosition, projTopVec);
radialDistance = VectorLength(projPlane);
ComputeInnerRadiusDiffusionFactors(
radialDistance,
innerRadius,
diffusionFactors
);
/* See the ComputeInnerRadiusDiffusionFactors comment above for more context. */
/* DIFFUSION_SPEAKERS_ALL corresponds to diffusing part of the sound to all of the
* speakers, equally. The amount of sound is determined by the float value
* diffusionFactors[DIFFUSION_SPEAKERS_ALL]. */
if (diffusionFactors[DIFFUSION_SPEAKERS_ALL] > 0.0f)
{
nChannelsToDiffuseTo = curConfig->numNonLFSpeakers;
totalEnergy = diffusionFactors[DIFFUSION_SPEAKERS_ALL] * attenuation;
if (skipCenter)
{
nChannelsToDiffuseTo -= 1;
FAudio_assert(curConfig->speakers[0].azimuth == SPEAKER_AZIMUTH_CENTER);
centerChannelIdx = curConfig->speakers[0].matrixIdx;
}
energyPerChannel = totalEnergy / nChannelsToDiffuseTo;
for (iS = 0; iS < curConfig->numNonLFSpeakers; iS += 1)
{
const uint32_t curSpeakerIdx = curConfig->speakers[iS].matrixIdx;
if (skipCenter && curSpeakerIdx == centerChannelIdx)
{
continue;
}
pMatrixCoefficients[curSpeakerIdx * numSrcChannels + currentChannel] += energyPerChannel;
}
}
/* DIFFUSION_SPEAKERS_MATCHING corresponds to sending part of the sound to the speakers closest
* (in terms of azimuth) to the current position of the emitter. The amount of sound we shoud send
* corresponds here to diffusionFactors[DIFFUSION_SPEAKERS_MATCHING].
* We use the FindSpeakerAzimuths function to find the speakers that match. */
if (diffusionFactors[DIFFUSION_SPEAKERS_MATCHING] > 0.0f)
{
const float totalEnergy = diffusionFactors[DIFFUSION_SPEAKERS_MATCHING] * attenuation;
x = VectorDot(listenerBasis->front, projPlane);
y = VectorDot(listenerBasis->right, projPlane);
/* Now, a critical point: We shouldn't be sending sound to
* matching speakers when x and y are close to 0. That's the
* contract we get from ComputeInnerRadiusDiffusionFactors,
* which checks that we're not too close to the zero distance.
* This allows the atan2 calculation to give good results.
*/
/* atan2 returns [-PI, PI], but we want [0, 2PI] */
emitterAzimuth = FAudio_atan2f(y, x);
if (emitterAzimuth < 0.0f)
{
emitterAzimuth += F3DAUDIO_2PI;
}
FindSpeakerAzimuths(curConfig, emitterAzimuth, skipCenter, infos);
a0 = infos[0]->azimuth;
a1 = infos[1]->azimuth;
/* The following code is necessary to handle the singularity in
* (0 == 2PI). It'll give us a nice, well ordered interval.
*/
if (a0 > a1)
{
if (emitterAzimuth >= a0)
{
emitterAzimuth -= F3DAUDIO_2PI;
}
a0 -= F3DAUDIO_2PI;
}
FAudio_assert(emitterAzimuth >= a0 && emitterAzimuth <= a1);
val = (emitterAzimuth - a0) / (a1 - a0);
i0 = infos[0]->matrixIdx;
i1 = infos[1]->matrixIdx;
pMatrixCoefficients[i0 * numSrcChannels + currentChannel] += (1.0f - val) * totalEnergy;
pMatrixCoefficients[i1 * numSrcChannels + currentChannel] += ( val) * totalEnergy;
}
/* DIFFUSION_SPEAKERS_OPPOSITE corresponds to sending part of the sound to the speakers
* _opposite_ the ones that are the closest to the current emitter position.
* To find these, we simply find the ones that are closest to the current emitter's azimuth + PI
* using the FindSpeakerAzimuth function. */
if (diffusionFactors[DIFFUSION_SPEAKERS_OPPOSITE] > 0.0f)
{
/* This code is similar to the matching speakers code above. */
const float totalEnergy = diffusionFactors[DIFFUSION_SPEAKERS_OPPOSITE] * attenuation;
x = VectorDot(listenerBasis->front, projPlane);
y = VectorDot(listenerBasis->right, projPlane);
/* Similarly, we expect atan2 to be well behaved here. */
emitterAzimuth = FAudio_atan2f(y, x);
/* Opposite speakers lie at azimuth + PI */
emitterAzimuth += F3DAUDIO_PI;
/* Normalize to [0; 2PI) range. */
if (emitterAzimuth < 0.0f)
{
emitterAzimuth += F3DAUDIO_2PI;
}
else if (emitterAzimuth > F3DAUDIO_2PI)
{
emitterAzimuth -= F3DAUDIO_2PI;
}
FindSpeakerAzimuths(curConfig, emitterAzimuth, skipCenter, infos);
a0 = infos[0]->azimuth;
a1 = infos[1]->azimuth;
/* The following code is necessary to handle the singularity in
* (0 == 2PI). It'll give us a nice, well ordered interval.
*/
if (a0 > a1)
{
if (emitterAzimuth >= a0)
{
emitterAzimuth -= F3DAUDIO_2PI;
}
a0 -= F3DAUDIO_2PI;
}
FAudio_assert(emitterAzimuth >= a0 && emitterAzimuth <= a1);
val = (emitterAzimuth - a0) / (a1 - a0);
i0 = infos[0]->matrixIdx;
i1 = infos[1]->matrixIdx;
pMatrixCoefficients[i0 * numSrcChannels + currentChannel] += (1.0f - val) * totalEnergy;
pMatrixCoefficients[i1 * numSrcChannels + currentChannel] += ( val) * totalEnergy;
}
if (flags & F3DAUDIO_CALCULATE_REDIRECT_TO_LFE)
{
FAudio_assert(curConfig->LFSpeakerIdx != -1);
pMatrixCoefficients[curConfig->LFSpeakerIdx * numSrcChannels + currentChannel] += LFEattenuation / numSrcChannels;
}
}
/* Calculations consist of several orthogonal steps that compose multiplicatively:
*
* First, we compute the attenuations (volume and LFE) due to distance, which
* may involve an optional volume and/or LFE volume curve.
*
* Then, we compute those due to optional cones.
*
* We then compute how much energy is diffuse w.r.t InnerRadius. If InnerRadius
* is 0.0f, this step is computed as if it was InnerRadius was
* NON_NULL_DISTANCE_DISK_RADIUS. The way this works is, we look at the radial
* distance of the current emitter channel to the listener, with regard to the
* listener's top orientation (i.e. this distance is independant of the
* emitter's elevation!). If this distance is less than NULL_DISTANCE_RADIUS,
* energy is diffused equally between all channels. If it's greater than
* InnerRadius (or NON_NULL_DISTANCE_RADIUS, if InnerRadius is 0.0f, as
* mentioned above), the two closest speakers, by azimuth, receive all the
* energy. Between InnerRadius/2.0f and InnerRadius, the energy starts bleeding
* into the opposite speakers. Once we go below InnerRadius/2.0f, the energy
* also starts to bleed into the other (non-opposite) channels, if there are
* any. This computation is handled by the ComputeInnerRadiusDiffusionFactors
* function. (TODO: High-accuracy version of this.)
*
* Finally, if we're not in the equal diffusion case, we find out the azimuths
* of the two closest speakers (with azimuth being defined with respect to the
* listener's front orientation, in the plane normal to the listener's top
* vector), as well as the azimuths of the two opposite speakers, if necessary,
* and linearly interpolate with respect to the angular distance. In the equal
* diffusion case, each channel receives the same value.
*
* Note: in the case of multi-channel emitters, the distance attenuation is only
* compted once, but all the azimuths and InnerRadius calculations are done per
* emitter channel.
*
* TODO: Handle InnerRadiusAngle. But honestly the X3DAudio default behaviour is
* so wacky that I wonder if anybody has ever used it.
* -Adrien
*/
static inline void CalculateMatrix(
uint32_t ChannelMask,
uint32_t Flags,
const F3DAUDIO_LISTENER *pListener,
const F3DAUDIO_EMITTER *pEmitter,
uint32_t SrcChannelCount,
uint32_t DstChannelCount,
F3DAUDIO_VECTOR emitterToListener,
float eToLDistance,
float normalizedDistance,
float* MatrixCoefficients
) {
uint32_t iEC;
float curEmAzimuth;
const ConfigInfo* curConfig = GetConfigInfo(ChannelMask);
float attenuation = ComputeDistanceAttenuation(
normalizedDistance,
pEmitter->pVolumeCurve
);
/* TODO: this could be skipped if the destination has no LFE */
float LFEattenuation = ComputeDistanceAttenuation(
normalizedDistance,
pEmitter->pLFECurve
);
F3DAUDIO_VECTOR listenerToEmitter;
F3DAUDIO_VECTOR listenerToEmChannel;
F3DAUDIO_BASIS listenerBasis;
/* Note: For both cone calculations, the angle might be NaN or infinite
* if distance == 0... ComputeConeParameter *does* check for this
* special case. It is necessary that we still go through the
* ComputeConeParameter function, because omnidirectional cones might
* give either InnerVolume or OuterVolume.
* -Adrien
*/
if (pListener->pCone)
{
/* Negate the dot product because we need listenerToEmitter in
* this case
* -Adrien
*/
const float angle = -FAudio_acosf(
VectorDot(pListener->OrientFront, emitterToListener) /
eToLDistance
);
const float listenerConeParam = ComputeConeParameter(
eToLDistance,
angle,
pListener->pCone->InnerAngle,
pListener->pCone->OuterAngle,
pListener->pCone->InnerVolume,
pListener->pCone->OuterVolume
);
attenuation *= listenerConeParam;
LFEattenuation *= listenerConeParam;
}
/* See note above. */
if (pEmitter->pCone && pEmitter->ChannelCount == 1)
{
const float angle = FAudio_acosf(
VectorDot(pEmitter->OrientFront, emitterToListener) /
eToLDistance
);
const float emitterConeParam = ComputeConeParameter(
eToLDistance,
angle,
pEmitter->pCone->InnerAngle,
pEmitter->pCone->OuterAngle,
pEmitter->pCone->InnerVolume,
pEmitter->pCone->OuterVolume
);
attenuation *= emitterConeParam;
}
FAudio_zero(MatrixCoefficients, sizeof(float) * SrcChannelCount * DstChannelCount);
/* In the SPEAKER_MONO case, we can skip all energy diffusion calculation. */
if (DstChannelCount == 1)
{
for (iEC = 0; iEC < pEmitter->ChannelCount; iEC += 1)
{
curEmAzimuth = 0.0f;
if (pEmitter->pChannelAzimuths)
{
curEmAzimuth = pEmitter->pChannelAzimuths[iEC];
}
/* The MONO setup doesn't have an LFE speaker. */
if (curEmAzimuth != F3DAUDIO_2PI)
{
MatrixCoefficients[iEC] = attenuation;
}
}
}
else
{
listenerToEmitter = VectorScale(emitterToListener, -1.0f);
/* Remember here that the coordinate system is Left-Handed. */
listenerBasis.front = pListener->OrientFront;
listenerBasis.right = VectorCross(pListener->OrientTop, pListener->OrientFront);
listenerBasis.top = pListener->OrientTop;
/* Handling the mono-channel emitter case separately is easier
* than having it as a separate case of a for-loop; indeed, in
* this case, we need to ignore the non-relevant values from the
* emitter, _even if they're set_.
*/
if (pEmitter->ChannelCount == 1)
{
listenerToEmChannel = listenerToEmitter;
ComputeEmitterChannelCoefficients(
curConfig,
&listenerBasis,
pEmitter->InnerRadius,
listenerToEmChannel,
attenuation,
LFEattenuation,
Flags,
0 /* currentChannel */,
1 /* numSrcChannels */,
MatrixCoefficients
);
}
else /* Multi-channel emitter case. */
{
const F3DAUDIO_VECTOR emitterRight = VectorCross(pEmitter->OrientTop, pEmitter->OrientFront);
for (iEC = 0; iEC < pEmitter->ChannelCount; iEC += 1)
{
const float emChAzimuth = pEmitter->pChannelAzimuths[iEC];
/* LFEs are easy enough to deal with; we can
* just do them separately.
*/
if (emChAzimuth == F3DAUDIO_2PI)
{
MatrixCoefficients[curConfig->LFSpeakerIdx * pEmitter->ChannelCount + iEC] = LFEattenuation;
}
else
{
/* First compute the emitter channel
* vector relative to the emitter base...
*/
const F3DAUDIO_VECTOR emitterBaseToChannel = VectorAdd(
VectorScale(pEmitter->OrientFront, pEmitter->ChannelRadius * FAudio_cosf(emChAzimuth)),
VectorScale(emitterRight, pEmitter->ChannelRadius * FAudio_sinf(emChAzimuth))
);
/* ... then translate. */
listenerToEmChannel = VectorAdd(
listenerToEmitter,
emitterBaseToChannel
);
ComputeEmitterChannelCoefficients(
curConfig,
&listenerBasis,
pEmitter->InnerRadius,
listenerToEmChannel,
attenuation,
LFEattenuation,
Flags,
iEC,
pEmitter->ChannelCount,
MatrixCoefficients
);
}
}
}
}
/* TODO: add post check to validate values
* (sum < 1, all values > 0, no Inf / NaN..
* Sum can be >1 when cone or curve is set to a gain!
* Perhaps under a paranoid check disabled by default.
*/
}
/*
* OTHER CALCULATIONS
*/
/* DopplerPitchScalar
* Adapted from algorithm published as a part of the webaudio specification:
* https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html#Spatialization-doppler-shift
* -Chad
*/
static inline void CalculateDoppler(
float SpeedOfSound,
const F3DAUDIO_LISTENER* pListener,
const F3DAUDIO_EMITTER* pEmitter,
F3DAUDIO_VECTOR emitterToListener,
float eToLDistance,
float* listenerVelocityComponent,
float* emitterVelocityComponent,
float* DopplerFactor
) {
float scaledSpeedOfSound;
*DopplerFactor = 1.0f;
/* Project... */
if (eToLDistance != 0.0f)
{
*listenerVelocityComponent =
VectorDot(emitterToListener, pListener->Velocity) / eToLDistance;
*emitterVelocityComponent =
VectorDot(emitterToListener, pEmitter->Velocity) / eToLDistance;
}
else
{
*listenerVelocityComponent = 0.0f;
*emitterVelocityComponent = 0.0f;
}
if (pEmitter->DopplerScaler > 0.0f)
{
scaledSpeedOfSound = SpeedOfSound / pEmitter->DopplerScaler;
/* Clamp... */
*listenerVelocityComponent = FAudio_min(
*listenerVelocityComponent,
scaledSpeedOfSound
);
*emitterVelocityComponent = FAudio_min(
*emitterVelocityComponent,
scaledSpeedOfSound
);
/* ... then Multiply. */
*DopplerFactor = (
SpeedOfSound - pEmitter->DopplerScaler * *listenerVelocityComponent
) / (
SpeedOfSound - pEmitter->DopplerScaler * *emitterVelocityComponent
);
if (isnan(*DopplerFactor)) /* If emitter/listener are at the same pos... */
{
*DopplerFactor = 1.0f;
}
/* Limit the pitch shifting to 2 octaves up and 1 octave down */
*DopplerFactor = FAudio_clamp(
*DopplerFactor,
0.5f,
4.0f
);
}
}
void F3DAudioCalculate(
const F3DAUDIO_HANDLE Instance,
const F3DAUDIO_LISTENER *pListener,
const F3DAUDIO_EMITTER *pEmitter,
uint32_t Flags,
F3DAUDIO_DSP_SETTINGS *pDSPSettings
) {
uint32_t i;
F3DAUDIO_VECTOR emitterToListener;
float eToLDistance, normalizedDistance, dp;
#define DEFAULT_POINTS(name, x1, y1, x2, y2) \
static F3DAUDIO_DISTANCE_CURVE_POINT name##Points[2] = \
{ \
{ x1, y1 }, \
{ x2, y2 } \
}; \
static F3DAUDIO_DISTANCE_CURVE name##Default = \
{ \
(F3DAUDIO_DISTANCE_CURVE_POINT*) &name##Points[0], 2 \
};
DEFAULT_POINTS(lpfDirect, 0.0f, 1.0f, 1.0f, 0.75f)
DEFAULT_POINTS(lpfReverb, 0.0f, 0.75f, 1.0f, 0.75f)
DEFAULT_POINTS(reverb, 0.0f, 1.0f, 1.0f, 0.0f)
#undef DEFAULT_POINTS
/* For XACT, this calculates "Distance" */
emitterToListener = VectorSub(pListener->Position, pEmitter->Position);
eToLDistance = VectorLength(emitterToListener);
pDSPSettings->EmitterToListenerDistance = eToLDistance;
F3DAudioCheckCalculateParams(Instance, pListener, pEmitter, Flags, pDSPSettings);
/* This is used by MATRIX, LPF, and REVERB */
normalizedDistance = eToLDistance / pEmitter->CurveDistanceScaler;
if (Flags & F3DAUDIO_CALCULATE_MATRIX)
{
CalculateMatrix(
SPEAKERMASK(Instance),
Flags,
pListener,
pEmitter,
pDSPSettings->SrcChannelCount,
pDSPSettings->DstChannelCount,
emitterToListener,
eToLDistance,
normalizedDistance,
pDSPSettings->pMatrixCoefficients
);
}
if (Flags & F3DAUDIO_CALCULATE_LPF_DIRECT)
{
pDSPSettings->LPFDirectCoefficient = ComputeDistanceAttenuation(
normalizedDistance,
(pEmitter->pLPFDirectCurve != NULL) ?
pEmitter->pLPFDirectCurve :
&lpfDirectDefault
);
}
if (Flags & F3DAUDIO_CALCULATE_LPF_REVERB)
{
pDSPSettings->LPFReverbCoefficient = ComputeDistanceAttenuation(
normalizedDistance,
(pEmitter->pLPFReverbCurve != NULL) ?
pEmitter->pLPFReverbCurve :
&lpfReverbDefault
);
}
if (Flags & F3DAUDIO_CALCULATE_REVERB)
{
pDSPSettings->ReverbLevel = ComputeDistanceAttenuation(
normalizedDistance,
(pEmitter->pReverbCurve != NULL) ?
pEmitter->pReverbCurve :
&reverbDefault
);
}
/* For XACT, this calculates "DopplerPitchScalar" */
if (Flags & F3DAUDIO_CALCULATE_DOPPLER)
{
CalculateDoppler(
SPEEDOFSOUND(Instance),
pListener,
pEmitter,
emitterToListener,
eToLDistance,
&pDSPSettings->ListenerVelocityComponent,
&pDSPSettings->EmitterVelocityComponent,
&pDSPSettings->DopplerFactor
);
}
/* For XACT, this calculates "OrientationAngle" */
if (Flags & F3DAUDIO_CALCULATE_EMITTER_ANGLE)
{
/* Determined roughly.
* Below that distance, the emitter angle is considered to be PI/2.
*/
#define EMITTER_ANGLE_NULL_DISTANCE 1.2e-7
if (eToLDistance < EMITTER_ANGLE_NULL_DISTANCE)
{
pDSPSettings->EmitterToListenerAngle = F3DAUDIO_PI / 2.0f;
}
else
{
/* Note: pEmitter->OrientFront is normalized. */
dp = VectorDot(emitterToListener, pEmitter->OrientFront) / eToLDistance;
pDSPSettings->EmitterToListenerAngle = FAudio_acosf(dp);
}
}
/* Unimplemented Flags */
if ( (Flags & F3DAUDIO_CALCULATE_DELAY) &&
SPEAKERMASK(Instance) == SPEAKER_STEREO )
{
for (i = 0; i < pDSPSettings->DstChannelCount; i += 1)
{
pDSPSettings->pDelayTimes[i] = 0.0f;
}
FAudio_assert(0 && "DELAY not implemented!");
}
}
/* vim: set noexpandtab shiftwidth=8 tabstop=8: */