Show More
Commit Description:
Various UI improvements.
Commit Description:
Various UI improvements.
File last commit:
Show/Diff file:
Action:
FNA/src/Content/LzxDecoder.cs
745 lines | 22.7 KiB | text/x-csharp | CSharpLexer
#region License
/* LzxDecoder.cs - C# port of libmsport's lzxd.c
* Copyright 2003-2004 Stuart Caie
* Copyright 2011 Ali Scissons
*
* Released under a dual MSPL/LGPL license.
* See lzxdecoder.LICENSE for details.
*/
#endregion
#region Using Statements
using System;
#endregion
namespace Microsoft.Xna.Framework.Content
{
using System.IO;
class LzxDecoder
{
public static uint[] position_base = null;
public static byte[] extra_bits = null;
private LzxState m_state;
public LzxDecoder (int window)
{
uint wndsize = (uint)(1 << window);
int posn_slots;
// Setup proper exception.
if(window < 15 || window > 21) throw new UnsupportedWindowSizeRange();
// Let's initialize our state.
m_state = new LzxState();
m_state.actual_size = 0;
m_state.window = new byte[wndsize];
for(int i = 0; i < wndsize; i++) m_state.window[i] = 0xDC;
m_state.actual_size = wndsize;
m_state.window_size = wndsize;
m_state.window_posn = 0;
// Initialize static tables.
if(extra_bits == null)
{
extra_bits = new byte[52];
for(int i = 0, j = 0; i <= 50; i += 2)
{
extra_bits[i] = extra_bits[i+1] = (byte)j;
if ((i != 0) && (j < 17)) j++;
}
}
if(position_base == null)
{
position_base = new uint[51];
for(int i = 0, j = 0; i <= 50; i++)
{
position_base[i] = (uint)j;
j += 1 << extra_bits[i];
}
}
// Calculate required position slots.
if(window == 20) posn_slots = 42;
else if(window == 21) posn_slots = 50;
else posn_slots = window << 1;
m_state.R0 = m_state.R1 = m_state.R2 = 1;
m_state.main_elements = (ushort)(LzxConstants.NUM_CHARS + (posn_slots << 3));
m_state.header_read = 0;
m_state.frames_read = 0;
m_state.block_remaining = 0;
m_state.block_type = LzxConstants.BLOCKTYPE.INVALID;
m_state.intel_curpos = 0;
m_state.intel_started = 0;
m_state.PRETREE_table = new ushort[(1 << LzxConstants.PRETREE_TABLEBITS) + (LzxConstants.PRETREE_MAXSYMBOLS << 1)];
m_state.PRETREE_len = new byte[LzxConstants.PRETREE_MAXSYMBOLS + LzxConstants.LENTABLE_SAFETY];
m_state.MAINTREE_table = new ushort[(1 << LzxConstants.MAINTREE_TABLEBITS) + (LzxConstants.MAINTREE_MAXSYMBOLS << 1)];
m_state.MAINTREE_len = new byte[LzxConstants.MAINTREE_MAXSYMBOLS + LzxConstants.LENTABLE_SAFETY];
m_state.LENGTH_table = new ushort[(1 << LzxConstants.LENGTH_TABLEBITS) + (LzxConstants.LENGTH_MAXSYMBOLS << 1)];
m_state.LENGTH_len = new byte[LzxConstants.LENGTH_MAXSYMBOLS + LzxConstants.LENTABLE_SAFETY];
m_state.ALIGNED_table = new ushort[(1 << LzxConstants.ALIGNED_TABLEBITS) + (LzxConstants.ALIGNED_MAXSYMBOLS << 1)];
m_state.ALIGNED_len = new byte[LzxConstants.ALIGNED_MAXSYMBOLS + LzxConstants.LENTABLE_SAFETY];
// Initialize tables to 0 (because deltas will be applied to them).
for(int i = 0; i < LzxConstants.MAINTREE_MAXSYMBOLS; i++) m_state.MAINTREE_len[i] = 0;
for(int i = 0; i < LzxConstants.LENGTH_MAXSYMBOLS; i++) m_state.LENGTH_len[i] = 0;
}
public int Decompress(Stream inData, int inLen, Stream outData, int outLen)
{
BitBuffer bitbuf = new BitBuffer(inData);
long startpos = inData.Position;
long endpos = inData.Position + inLen;
byte[] window = m_state.window;
uint window_posn = m_state.window_posn;
uint window_size = m_state.window_size;
uint R0 = m_state.R0;
uint R1 = m_state.R1;
uint R2 = m_state.R2;
uint i, j;
int togo = outLen, this_run, main_element, match_length, match_offset, length_footer, extra, verbatim_bits;
int rundest, runsrc, copy_length, aligned_bits;
bitbuf.InitBitStream();
// Read header if necessary.
if(m_state.header_read == 0)
{
uint intel = bitbuf.ReadBits(1);
if(intel != 0)
{
// Read the filesize.
i = bitbuf.ReadBits(16); j = bitbuf.ReadBits(16);
m_state.intel_filesize = (int)((i << 16) | j);
}
m_state.header_read = 1;
}
// Main decoding loop.
while(togo > 0)
{
// last block finished, new block expected.
if(m_state.block_remaining == 0)
{
// TODO may screw something up here
if(m_state.block_type == LzxConstants.BLOCKTYPE.UNCOMPRESSED) {
if((m_state.block_length & 1) == 1) inData.ReadByte(); /* realign bitstream to word */
bitbuf.InitBitStream();
}
m_state.block_type = (LzxConstants.BLOCKTYPE)bitbuf.ReadBits(3);
i = bitbuf.ReadBits(16);
j = bitbuf.ReadBits(8);
m_state.block_remaining = m_state.block_length = (uint)((i << 8) | j);
switch(m_state.block_type)
{
case LzxConstants.BLOCKTYPE.ALIGNED:
for(i = 0, j = 0; i < 8; i++) { j = bitbuf.ReadBits(3); m_state.ALIGNED_len[i] = (byte)j; }
MakeDecodeTable(LzxConstants.ALIGNED_MAXSYMBOLS, LzxConstants.ALIGNED_TABLEBITS,
m_state.ALIGNED_len, m_state.ALIGNED_table);
// Rest of aligned header is same as verbatim
goto case LzxConstants.BLOCKTYPE.VERBATIM;
case LzxConstants.BLOCKTYPE.VERBATIM:
ReadLengths(m_state.MAINTREE_len, 0, 256, bitbuf);
ReadLengths(m_state.MAINTREE_len, 256, m_state.main_elements, bitbuf);
MakeDecodeTable(LzxConstants.MAINTREE_MAXSYMBOLS, LzxConstants.MAINTREE_TABLEBITS,
m_state.MAINTREE_len, m_state.MAINTREE_table);
if(m_state.MAINTREE_len[0xE8] != 0) m_state.intel_started = 1;
ReadLengths(m_state.LENGTH_len, 0, LzxConstants.NUM_SECONDARY_LENGTHS, bitbuf);
MakeDecodeTable(LzxConstants.LENGTH_MAXSYMBOLS, LzxConstants.LENGTH_TABLEBITS,
m_state.LENGTH_len, m_state.LENGTH_table);
break;
case LzxConstants.BLOCKTYPE.UNCOMPRESSED:
m_state.intel_started = 1; // Because we can't assume otherwise.
bitbuf.EnsureBits(16); // Get up to 16 pad bits into the buffer.
if(bitbuf.GetBitsLeft() > 16) inData.Seek(-2, SeekOrigin.Current); /* and align the bitstream! */
byte hi, mh, ml, lo;
lo = (byte)inData.ReadByte(); ml = (byte)inData.ReadByte(); mh = (byte)inData.ReadByte(); hi = (byte)inData.ReadByte();
R0 = (uint)(lo | ml << 8 | mh << 16 | hi << 24);
lo = (byte)inData.ReadByte(); ml = (byte)inData.ReadByte(); mh = (byte)inData.ReadByte(); hi = (byte)inData.ReadByte();
R1 = (uint)(lo | ml << 8 | mh << 16 | hi << 24);
lo = (byte)inData.ReadByte(); ml = (byte)inData.ReadByte(); mh = (byte)inData.ReadByte(); hi = (byte)inData.ReadByte();
R2 = (uint)(lo | ml << 8 | mh << 16 | hi << 24);
break;
default:
return -1; // TODO throw proper exception
}
}
// Buffer exhaustion check.
if(inData.Position > (startpos + inLen))
{
/* It's possible to have a file where the next run is less than
* 16 bits in size. In this case, the READ_HUFFSYM() macro used
* in building the tables will exhaust the buffer, so we should
* allow for this, but not allow those accidentally read bits to
* be used (so we check that there are at least 16 bits
* remaining - in this boundary case they aren't really part of
* the compressed data).
*/
if(inData.Position > (startpos+inLen+2) || bitbuf.GetBitsLeft() < 16) return -1; //TODO throw proper exception
}
while((this_run = (int)m_state.block_remaining) > 0 && togo > 0)
{
if(this_run > togo) this_run = togo;
togo -= this_run;
m_state.block_remaining -= (uint)this_run;
// Apply 2^x-1 mask.
window_posn &= window_size - 1;
// Runs can't straddle the window wraparound.
if((window_posn + this_run) > window_size)
return -1; // TODO: throw proper exception
switch(m_state.block_type)
{
case LzxConstants.BLOCKTYPE.VERBATIM:
while(this_run > 0)
{
main_element = (int)ReadHuffSym(m_state.MAINTREE_table, m_state.MAINTREE_len,
LzxConstants.MAINTREE_MAXSYMBOLS, LzxConstants.MAINTREE_TABLEBITS,
bitbuf);
if(main_element < LzxConstants.NUM_CHARS)
{
// Literal: 0 to NUM_CHARS-1.
window[window_posn++] = (byte)main_element;
this_run--;
}
else
{
// Match: NUM_CHARS + ((slot<<3) | length_header (3 bits))
main_element -= LzxConstants.NUM_CHARS;
match_length = main_element & LzxConstants.NUM_PRIMARY_LENGTHS;
if(match_length == LzxConstants.NUM_PRIMARY_LENGTHS)
{
length_footer = (int)ReadHuffSym(m_state.LENGTH_table, m_state.LENGTH_len,
LzxConstants.LENGTH_MAXSYMBOLS, LzxConstants.LENGTH_TABLEBITS,
bitbuf);
match_length += length_footer;
}
match_length += LzxConstants.MIN_MATCH;
match_offset = main_element >> 3;
if(match_offset > 2)
{
// Not repeated offset.
if(match_offset != 3)
{
extra = extra_bits[match_offset];
verbatim_bits = (int)bitbuf.ReadBits((byte)extra);
match_offset = (int)position_base[match_offset] - 2 + verbatim_bits;
}
else
{
match_offset = 1;
}
// Update repeated offset LRU queue.
R2 = R1; R1 = R0; R0 = (uint)match_offset;
}
else if(match_offset == 0)
{
match_offset = (int)R0;
}
else if(match_offset == 1)
{
match_offset = (int)R1;
R1 = R0; R0 = (uint)match_offset;
}
else // match_offset == 2
{
match_offset = (int)R2;
R2 = R0; R0 = (uint)match_offset;
}
rundest = (int)window_posn;
this_run -= match_length;
// Copy any wrapped around source data
if(window_posn >= match_offset)
{
// No wrap
runsrc = rundest - match_offset;
}
else
{
runsrc = rundest + ((int)window_size - match_offset);
copy_length = match_offset - (int)window_posn;
if(copy_length < match_length)
{
match_length -= copy_length;
window_posn += (uint)copy_length;
while(copy_length-- > 0) window[rundest++] = window[runsrc++];
runsrc = 0;
}
}
window_posn += (uint)match_length;
// Copy match data - no worries about destination wraps
while(match_length-- > 0) window[rundest++] = window[runsrc++];
}
}
break;
case LzxConstants.BLOCKTYPE.ALIGNED:
while(this_run > 0)
{
main_element = (int)ReadHuffSym(m_state.MAINTREE_table, m_state.MAINTREE_len,
LzxConstants.MAINTREE_MAXSYMBOLS, LzxConstants.MAINTREE_TABLEBITS,
bitbuf);
if(main_element < LzxConstants.NUM_CHARS)
{
// Literal 0 to NUM_CHARS-1
window[window_posn++] = (byte)main_element;
this_run -= 1;
}
else
{
// Match: NUM_CHARS + ((slot<<3) | length_header (3 bits))
main_element -= LzxConstants.NUM_CHARS;
match_length = main_element & LzxConstants.NUM_PRIMARY_LENGTHS;
if(match_length == LzxConstants.NUM_PRIMARY_LENGTHS)
{
length_footer = (int)ReadHuffSym(m_state.LENGTH_table, m_state.LENGTH_len,
LzxConstants.LENGTH_MAXSYMBOLS, LzxConstants.LENGTH_TABLEBITS,
bitbuf);
match_length += length_footer;
}
match_length += LzxConstants.MIN_MATCH;
match_offset = main_element >> 3;
if(match_offset > 2)
{
// Not repeated offset.
extra = extra_bits[match_offset];
match_offset = (int)position_base[match_offset] - 2;
if(extra > 3)
{
// Verbatim and aligned bits.
extra -= 3;
verbatim_bits = (int)bitbuf.ReadBits((byte)extra);
match_offset += (verbatim_bits << 3);
aligned_bits = (int)ReadHuffSym(m_state.ALIGNED_table, m_state.ALIGNED_len,
LzxConstants.ALIGNED_MAXSYMBOLS, LzxConstants.ALIGNED_TABLEBITS,
bitbuf);
match_offset += aligned_bits;
}
else if(extra == 3)
{
// Aligned bits only.
aligned_bits = (int)ReadHuffSym(m_state.ALIGNED_table, m_state.ALIGNED_len,
LzxConstants.ALIGNED_MAXSYMBOLS, LzxConstants.ALIGNED_TABLEBITS,
bitbuf);
match_offset += aligned_bits;
}
else if (extra > 0) // extra==1, extra==2
{
// Verbatim bits only.
verbatim_bits = (int)bitbuf.ReadBits((byte)extra);
match_offset += verbatim_bits;
}
else // extra == 0
{
// ???
match_offset = 1;
}
// Update repeated offset LRU queue.
R2 = R1; R1 = R0; R0 = (uint)match_offset;
}
else if( match_offset == 0)
{
match_offset = (int)R0;
}
else if(match_offset == 1)
{
match_offset = (int)R1;
R1 = R0; R0 = (uint)match_offset;
}
else // match_offset == 2
{
match_offset = (int)R2;
R2 = R0; R0 = (uint)match_offset;
}
rundest = (int)window_posn;
this_run -= match_length;
// Copy any wrapped around source data
if(window_posn >= match_offset)
{
// No wrap
runsrc = rundest - match_offset;
}
else
{
runsrc = rundest + ((int)window_size - match_offset);
copy_length = match_offset - (int)window_posn;
if(copy_length < match_length)
{
match_length -= copy_length;
window_posn += (uint)copy_length;
while(copy_length-- > 0) window[rundest++] = window[runsrc++];
runsrc = 0;
}
}
window_posn += (uint)match_length;
// Copy match data - no worries about destination wraps.
while(match_length-- > 0) window[rundest++] = window[runsrc++];
}
}
break;
case LzxConstants.BLOCKTYPE.UNCOMPRESSED:
if((inData.Position + this_run) > endpos) return -1; // TODO: Throw proper exception
byte[] temp_buffer = new byte[this_run];
inData.Read(temp_buffer, 0, this_run);
temp_buffer.CopyTo(window, (int)window_posn);
window_posn += (uint)this_run;
break;
default:
return -1; // TODO: Throw proper exception
}
}
}
if(togo != 0) return -1; // TODO: Throw proper exception
int start_window_pos = (int)window_posn;
if(start_window_pos == 0) start_window_pos = (int)window_size;
start_window_pos -= outLen;
outData.Write(window, start_window_pos, outLen);
m_state.window_posn = window_posn;
m_state.R0 = R0;
m_state.R1 = R1;
m_state.R2 = R2;
// TODO: Finish intel E8 decoding.
// Intel E8 decoding.
if((m_state.frames_read++ < 32768) && m_state.intel_filesize != 0)
{
if(outLen <= 6 || m_state.intel_started == 0)
{
m_state.intel_curpos += outLen;
}
else
{
int dataend = outLen - 10;
uint curpos = (uint)m_state.intel_curpos;
m_state.intel_curpos = (int)curpos + outLen;
while(outData.Position < dataend)
{
if(outData.ReadByte() != 0xE8) { curpos++; continue; }
}
}
return -1;
}
return 0;
}
// TODO: Make returns throw exceptions
private int MakeDecodeTable(uint nsyms, uint nbits, byte[] length, ushort[] table)
{
ushort sym;
uint leaf;
byte bit_num = 1;
uint fill;
uint pos = 0; // The current position in the decode table.
uint table_mask = (uint)(1 << (int)nbits);
uint bit_mask = table_mask >> 1; // Don't do 0 length codes.
uint next_symbol = bit_mask; // Base of allocation for long codes.
// Fill entries for codes short enough for a direct mapping.
while (bit_num <= nbits )
{
for(sym = 0; sym < nsyms; sym++)
{
if(length[sym] == bit_num)
{
leaf = pos;
if ((pos += bit_mask) > table_mask)
{
return 1; // Table overrun
}
/* Fill all possible lookups of this symbol with the
* symbol itself.
*/
fill = bit_mask;
while(fill-- > 0) table[leaf++] = sym;
}
}
bit_mask >>= 1;
bit_num++;
}
// If there are any codes longer than nbits
if(pos != table_mask)
{
// Clear the remainder of the table.
for(sym = (ushort)pos; sym < table_mask; sym++) table[sym] = 0;
// Give ourselves room for codes to grow by up to 16 more bits.
pos <<= 16;
table_mask <<= 16;
bit_mask = 1 << 15;
while(bit_num <= 16)
{
for(sym = 0; sym < nsyms; sym++)
{
if(length[sym] == bit_num)
{
leaf = pos >> 16;
for(fill = 0; fill < bit_num - nbits; fill++)
{
// if this path hasn't been taken yet, 'allocate' two entries.
if(table[leaf] == 0)
{
table[(next_symbol << 1)] = 0;
table[(next_symbol << 1) + 1] = 0;
table[leaf] = (ushort)(next_symbol++);
}
// Follow the path and select either left or right for next bit.
leaf = (uint)(table[leaf] << 1);
if(((pos >> (int)(15-fill)) & 1) == 1) leaf++;
}
table[leaf] = sym;
if((pos += bit_mask) > table_mask) return 1;
}
}
bit_mask >>= 1;
bit_num++;
}
}
// full table?
if(pos == table_mask) return 0;
// Either erroneous table, or all elements are 0 - let's find out.
for(sym = 0; sym < nsyms; sym++) if(length[sym] != 0) return 1;
return 0;
}
// TODO: Throw exceptions instead of returns
private void ReadLengths(byte[] lens, uint first, uint last, BitBuffer bitbuf)
{
uint x, y;
int z;
// hufftbl pointer here?
for(x = 0; x < 20; x++)
{
y = bitbuf.ReadBits(4);
m_state.PRETREE_len[x] = (byte)y;
}
MakeDecodeTable(LzxConstants.PRETREE_MAXSYMBOLS, LzxConstants.PRETREE_TABLEBITS,
m_state.PRETREE_len, m_state.PRETREE_table);
for(x = first; x < last;)
{
z = (int)ReadHuffSym(m_state.PRETREE_table, m_state.PRETREE_len,
LzxConstants.PRETREE_MAXSYMBOLS, LzxConstants.PRETREE_TABLEBITS, bitbuf);
if(z == 17)
{
y = bitbuf.ReadBits(4); y += 4;
while(y-- != 0) lens[x++] = 0;
}
else if(z == 18)
{
y = bitbuf.ReadBits(5); y += 20;
while(y-- != 0) lens[x++] = 0;
}
else if(z == 19)
{
y = bitbuf.ReadBits(1); y += 4;
z = (int)ReadHuffSym(m_state.PRETREE_table, m_state.PRETREE_len,
LzxConstants.PRETREE_MAXSYMBOLS, LzxConstants.PRETREE_TABLEBITS, bitbuf);
z = lens[x] - z; if(z < 0) z += 17;
while(y-- != 0) lens[x++] = (byte)z;
}
else
{
z = lens[x] - z; if(z < 0) z += 17;
lens[x++] = (byte)z;
}
}
}
private uint ReadHuffSym(ushort[] table, byte[] lengths, uint nsyms, uint nbits, BitBuffer bitbuf)
{
uint i, j;
bitbuf.EnsureBits(16);
if((i = table[bitbuf.PeekBits((byte)nbits)]) >= nsyms)
{
j = (uint)(1 << (int)((sizeof(uint)*8) - nbits));
do
{
j >>= 1; i <<= 1; i |= (bitbuf.GetBuffer() & j) != 0 ? (uint)1 : 0;
if(j == 0) return 0; // TODO: throw proper exception
} while((i = table[i]) >= nsyms);
}
j = lengths[i];
bitbuf.RemoveBits((byte)j);
return i;
}
#region Our BitBuffer Class
private class BitBuffer
{
uint buffer;
byte bitsleft;
Stream byteStream;
public BitBuffer(Stream stream)
{
byteStream = stream;
InitBitStream();
}
public void InitBitStream()
{
buffer = 0;
bitsleft = 0;
}
public void EnsureBits(byte bits)
{
while(bitsleft < bits) {
int lo = (byte)byteStream.ReadByte();
int hi = (byte)byteStream.ReadByte();
buffer |= (uint)(((hi << 8) | lo) << (sizeof(uint)*8 - 16 - bitsleft));
bitsleft += 16;
}
}
public uint PeekBits(byte bits)
{
return (buffer >> ((sizeof(uint)*8) - bits));
}
public void RemoveBits(byte bits)
{
buffer <<= bits;
bitsleft -= bits;
}
public uint ReadBits(byte bits)
{
uint ret = 0;
if(bits > 0)
{
EnsureBits(bits);
ret = PeekBits(bits);
RemoveBits(bits);
}
return ret;
}
public uint GetBuffer()
{
return buffer;
}
public byte GetBitsLeft()
{
return bitsleft;
}
}
#endregion
struct LzxState {
public uint R0, R1, R2; // For the LRU offset system
public ushort main_elements; // Number of main tree elements
public int header_read; // Have we started decoding at all yet?
public LzxConstants.BLOCKTYPE block_type; // Type of this block
public uint block_length; // Uncompressed length of this block
public uint block_remaining; // Uncompressed bytes still left to decode
public uint frames_read; // The number of CFDATA blocks processed
public int intel_filesize; // Magic header value used for transform
public int intel_curpos; // Current offset in transform space
public int intel_started; // Have we seen any translateable data yet?
public ushort[] PRETREE_table;
public byte[] PRETREE_len;
public ushort[] MAINTREE_table;
public byte[] MAINTREE_len;
public ushort[] LENGTH_table;
public byte[] LENGTH_len;
public ushort[] ALIGNED_table;
public byte[] ALIGNED_len;
/* NEEDED MEMBERS
* CAB actualsize
* CAB window
* CAB window_size
* CAB window_posn
*/
public uint actual_size;
public byte[] window;
public uint window_size;
public uint window_posn;
}
}
// CONSTANTS
struct LzxConstants {
public const ushort MIN_MATCH = 2;
public const ushort MAX_MATCH = 257;
public const ushort NUM_CHARS = 256;
public enum BLOCKTYPE {
INVALID = 0,
VERBATIM = 1,
ALIGNED = 2,
UNCOMPRESSED = 3
}
public const ushort PRETREE_NUM_ELEMENTS = 20;
public const ushort ALIGNED_NUM_ELEMENTS = 8;
public const ushort NUM_PRIMARY_LENGTHS = 7;
public const ushort NUM_SECONDARY_LENGTHS = 249;
public const ushort PRETREE_MAXSYMBOLS = PRETREE_NUM_ELEMENTS;
public const ushort PRETREE_TABLEBITS = 6;
public const ushort MAINTREE_MAXSYMBOLS = NUM_CHARS + 50*8;
public const ushort MAINTREE_TABLEBITS = 12;
public const ushort LENGTH_MAXSYMBOLS = NUM_SECONDARY_LENGTHS + 1;
public const ushort LENGTH_TABLEBITS = 12;
public const ushort ALIGNED_MAXSYMBOLS = ALIGNED_NUM_ELEMENTS;
public const ushort ALIGNED_TABLEBITS = 7;
public const ushort LENTABLE_SAFETY = 64;
}
// EXCEPTIONS
class UnsupportedWindowSizeRange : Exception
{
}
}