|
|
#region License
|
|
|
/* FNA - XNA4 Reimplementation for Desktop Platforms
|
|
|
* Copyright 2009-2020 Ethan Lee and the MonoGame Team
|
|
|
*
|
|
|
* Released under the Microsoft Public License.
|
|
|
* See LICENSE for details.
|
|
|
*/
|
|
|
|
|
|
/* Derived from code by the Mono.Xna Team (Copyright 2006).
|
|
|
* Released under the MIT License. See monoxna.LICENSE for details.
|
|
|
*/
|
|
|
#endregion
|
|
|
|
|
|
#region Using Statements
|
|
|
using System;
|
|
|
#endregion
|
|
|
|
|
|
namespace Microsoft.Xna.Framework
|
|
|
{
|
|
|
/// <summary>
|
|
|
/// Contains a collection of <see cref="CurveKey"/> points in 2D space and provides methods for evaluating features of the curve they define.
|
|
|
/// </summary>
|
|
|
[Serializable]
|
|
|
public class Curve
|
|
|
{
|
|
|
#region Public Properties
|
|
|
|
|
|
/// <summary>
|
|
|
/// Returns <c>true</c> if this curve is constant (has zero or one points); <c>false</c> otherwise.
|
|
|
/// </summary>
|
|
|
public bool IsConstant
|
|
|
{
|
|
|
get
|
|
|
{
|
|
|
return Keys.Count <= 1;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// The collection of curve keys.
|
|
|
/// </summary>
|
|
|
public CurveKeyCollection Keys
|
|
|
{
|
|
|
get;
|
|
|
private set;
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// Defines how to handle weighting values that are greater than the last control point in the curve.
|
|
|
/// </summary>
|
|
|
public CurveLoopType PostLoop
|
|
|
{
|
|
|
get;
|
|
|
set;
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// Defines how to handle weighting values that are less than the first control point in the curve.
|
|
|
/// </summary>
|
|
|
public CurveLoopType PreLoop
|
|
|
{
|
|
|
get;
|
|
|
set;
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
#region Public Constructors
|
|
|
|
|
|
/// <summary>
|
|
|
/// Constructs a curve.
|
|
|
/// </summary>
|
|
|
public Curve()
|
|
|
{
|
|
|
Keys = new CurveKeyCollection();
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
#region Private Constructors
|
|
|
|
|
|
private Curve(CurveKeyCollection keys)
|
|
|
{
|
|
|
Keys = keys;
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
#region Public Methods
|
|
|
|
|
|
/// <summary>
|
|
|
/// Creates a copy of this curve.
|
|
|
/// </summary>
|
|
|
/// <returns>A copy of this curve.</returns>
|
|
|
public Curve Clone()
|
|
|
{
|
|
|
Curve curve = new Curve(Keys.Clone());
|
|
|
curve.PreLoop = PreLoop;
|
|
|
curve.PostLoop = PostLoop;
|
|
|
return curve;
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// Evaluate the value at a position of this <see cref="Curve"/>.
|
|
|
/// </summary>
|
|
|
/// <param name="position">The position on this <see cref="Curve"/>.</param>
|
|
|
/// <returns>Value at the position on this <see cref="Curve"/>.</returns>
|
|
|
public float Evaluate(float position)
|
|
|
{
|
|
|
if (Keys.Count == 0)
|
|
|
{
|
|
|
return 0.0f;
|
|
|
}
|
|
|
if (Keys.Count == 1)
|
|
|
{
|
|
|
return Keys[0].Value;
|
|
|
}
|
|
|
|
|
|
CurveKey first = Keys[0];
|
|
|
CurveKey last = Keys[Keys.Count - 1];
|
|
|
|
|
|
if (position < first.Position)
|
|
|
{
|
|
|
switch (this.PreLoop)
|
|
|
{
|
|
|
case CurveLoopType.Constant:
|
|
|
return first.Value;
|
|
|
|
|
|
case CurveLoopType.Linear:
|
|
|
// Linear y = a*x +b with a tangent of last point.
|
|
|
return first.Value - first.TangentIn * (first.Position - position);
|
|
|
|
|
|
case CurveLoopType.Cycle:
|
|
|
// Start -> end / start -> end...
|
|
|
int cycle = GetNumberOfCycle(position);
|
|
|
float virtualPos = position - (cycle * (last.Position - first.Position));
|
|
|
return GetCurvePosition(virtualPos);
|
|
|
|
|
|
case CurveLoopType.CycleOffset:
|
|
|
/* Make the curve continue (with no step) so must up
|
|
|
* the curve each cycle of delta(value).
|
|
|
*/
|
|
|
cycle = GetNumberOfCycle(position);
|
|
|
virtualPos = position - (cycle * (last.Position - first.Position));
|
|
|
return (GetCurvePosition(virtualPos) + cycle * (last.Value - first.Value));
|
|
|
|
|
|
case CurveLoopType.Oscillate:
|
|
|
/* Go back on curve from end and target start
|
|
|
* Start-> end / end -> start...
|
|
|
*/
|
|
|
cycle = GetNumberOfCycle(position);
|
|
|
|
|
|
if (0 == cycle % 2f)
|
|
|
{
|
|
|
virtualPos = position - (cycle * (last.Position - first.Position));
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
virtualPos = last.Position - position + first.Position + (cycle * (last.Position - first.Position));
|
|
|
}
|
|
|
return GetCurvePosition(virtualPos);
|
|
|
}
|
|
|
}
|
|
|
else if (position > last.Position)
|
|
|
{
|
|
|
int cycle;
|
|
|
switch (this.PostLoop)
|
|
|
{
|
|
|
case CurveLoopType.Constant:
|
|
|
return last.Value;
|
|
|
|
|
|
case CurveLoopType.Linear:
|
|
|
// Linear y = a*x +b with a tangent of last point.
|
|
|
return last.Value + first.TangentOut * (position - last.Position);
|
|
|
|
|
|
case CurveLoopType.Cycle:
|
|
|
// Start -> end / start -> end...
|
|
|
cycle = GetNumberOfCycle(position);
|
|
|
float virtualPos = position - (cycle * (last.Position - first.Position));
|
|
|
return GetCurvePosition(virtualPos);
|
|
|
|
|
|
case CurveLoopType.CycleOffset:
|
|
|
/* Make the curve continue (with no step) so must up
|
|
|
* the curve each cycle of delta(value).
|
|
|
*/
|
|
|
cycle = GetNumberOfCycle(position);
|
|
|
virtualPos = position - (cycle * (last.Position - first.Position));
|
|
|
return (GetCurvePosition(virtualPos) + cycle * (last.Value - first.Value));
|
|
|
|
|
|
case CurveLoopType.Oscillate:
|
|
|
/* Go back on curve from end and target start.
|
|
|
* Start-> end / end -> start...
|
|
|
*/
|
|
|
cycle = GetNumberOfCycle(position);
|
|
|
virtualPos = position - (cycle * (last.Position - first.Position));
|
|
|
|
|
|
if (0 == cycle % 2f)
|
|
|
{
|
|
|
virtualPos = position - (cycle * (last.Position - first.Position));
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
virtualPos =
|
|
|
last.Position - position + first.Position +
|
|
|
(cycle * (last.Position - first.Position)
|
|
|
);
|
|
|
}
|
|
|
return GetCurvePosition(virtualPos);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// In curve.
|
|
|
return GetCurvePosition(position);
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// Computes tangents for all keys in the collection.
|
|
|
/// </summary>
|
|
|
/// <param name="tangentType">The tangent type for both in and out.</param>
|
|
|
public void ComputeTangents(CurveTangent tangentType)
|
|
|
{
|
|
|
ComputeTangents(tangentType, tangentType);
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// Computes tangents for all keys in the collection.
|
|
|
/// </summary>
|
|
|
/// <param name="tangentInType">The tangent in-type. <see cref="CurveKey.TangentIn"/> for more details.</param>
|
|
|
/// <param name="tangentOutType">The tangent out-type. <see cref="CurveKey.TangentOut"/> for more details.</param>
|
|
|
public void ComputeTangents(CurveTangent tangentInType, CurveTangent tangentOutType)
|
|
|
{
|
|
|
for (int i = 0; i < Keys.Count; i += 1)
|
|
|
{
|
|
|
ComputeTangent(i, tangentInType, tangentOutType);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// Computes tangent for the specific key in the collection.
|
|
|
/// </summary>
|
|
|
/// <param name="keyIndex">The index of a key in the collection.</param>
|
|
|
/// <param name="tangentType">The tangent type for both in and out.</param>
|
|
|
public void ComputeTangent(int keyIndex, CurveTangent tangentType)
|
|
|
{
|
|
|
ComputeTangent(keyIndex, tangentType, tangentType);
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// Computes tangent for the specific key in the collection.
|
|
|
/// </summary>
|
|
|
/// <param name="keyIndex">The index of key in the collection.</param>
|
|
|
/// <param name="tangentInType">The tangent in-type. <see cref="CurveKey.TangentIn"/> for more details.</param>
|
|
|
/// <param name="tangentOutType">The tangent out-type. <see cref="CurveKey.TangentOut"/> for more details.</param>
|
|
|
public void ComputeTangent(
|
|
|
int keyIndex,
|
|
|
CurveTangent tangentInType,
|
|
|
CurveTangent tangentOutType
|
|
|
) {
|
|
|
// See http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.curvetangent.aspx
|
|
|
|
|
|
CurveKey key = Keys[keyIndex];
|
|
|
|
|
|
float p0, p, p1;
|
|
|
p0 = p = p1 = key.Position;
|
|
|
|
|
|
float v0, v, v1;
|
|
|
v0 = v = v1 = key.Value;
|
|
|
|
|
|
if (keyIndex > 0)
|
|
|
{
|
|
|
p0 = Keys[keyIndex - 1].Position;
|
|
|
v0 = Keys[keyIndex - 1].Value;
|
|
|
}
|
|
|
|
|
|
if (keyIndex < Keys.Count-1)
|
|
|
{
|
|
|
p1 = Keys[keyIndex + 1].Position;
|
|
|
v1 = Keys[keyIndex + 1].Value;
|
|
|
}
|
|
|
|
|
|
switch (tangentInType)
|
|
|
{
|
|
|
case CurveTangent.Flat:
|
|
|
key.TangentIn = 0;
|
|
|
break;
|
|
|
case CurveTangent.Linear:
|
|
|
key.TangentIn = v - v0;
|
|
|
break;
|
|
|
case CurveTangent.Smooth:
|
|
|
float pn = p1 - p0;
|
|
|
if (MathHelper.WithinEpsilon(pn, 0.0f))
|
|
|
{
|
|
|
key.TangentIn = 0;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
key.TangentIn = (v1 - v0) * ((p - p0) / pn);
|
|
|
}
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
switch (tangentOutType)
|
|
|
{
|
|
|
case CurveTangent.Flat:
|
|
|
key.TangentOut = 0;
|
|
|
break;
|
|
|
case CurveTangent.Linear:
|
|
|
key.TangentOut = v1 - v;
|
|
|
break;
|
|
|
case CurveTangent.Smooth:
|
|
|
float pn = p1 - p0;
|
|
|
if (Math.Abs(pn) < float.Epsilon)
|
|
|
{
|
|
|
key.TangentOut = 0;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
key.TangentOut = (v1 - v0) * ((p1 - p) / pn);
|
|
|
}
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
#region Private Methods
|
|
|
|
|
|
private int GetNumberOfCycle(float position)
|
|
|
{
|
|
|
float cycle = (position - Keys[0].Position) /
|
|
|
(Keys[Keys.Count - 1].Position - Keys[0].Position);
|
|
|
if (cycle < 0f)
|
|
|
{
|
|
|
cycle -= 1;
|
|
|
}
|
|
|
return (int) cycle;
|
|
|
}
|
|
|
|
|
|
private float GetCurvePosition(float position)
|
|
|
{
|
|
|
// Only for position in curve.
|
|
|
CurveKey prev = Keys[0];
|
|
|
CurveKey next;
|
|
|
for (int i = 1; i < Keys.Count; i += 1)
|
|
|
{
|
|
|
next = Keys[i];
|
|
|
if (next.Position >= position)
|
|
|
{
|
|
|
if (prev.Continuity == CurveContinuity.Step)
|
|
|
{
|
|
|
if (position >= 1f)
|
|
|
{
|
|
|
return next.Value;
|
|
|
}
|
|
|
return prev.Value;
|
|
|
}
|
|
|
// To have t in [0,1]
|
|
|
float t = (
|
|
|
(position - prev.Position) /
|
|
|
(next.Position - prev.Position)
|
|
|
);
|
|
|
float ts = t * t;
|
|
|
float tss = ts * t;
|
|
|
/* After a lot of search on internet I have found all about
|
|
|
* spline function and bezier (phi'sss ancien) but finally
|
|
|
* used hermite curve:
|
|
|
* http://en.wikipedia.org/wiki/Cubic_Hermite_spline
|
|
|
* P(t) = (2*t^3 - 3t^2 + 1)*P0 + (t^3 - 2t^2 + t)m0 +
|
|
|
* (-2t^3 + 3t^2)P1 + (t^3-t^2)m1
|
|
|
* with P0.value = prev.value , m0 = prev.tangentOut,
|
|
|
* P1= next.value, m1 = next.TangentIn.
|
|
|
*/
|
|
|
return (
|
|
|
(2 * tss - 3 * ts + 1f) * prev.Value +
|
|
|
(tss - 2 * ts + t) * prev.TangentOut +
|
|
|
(3 * ts - 2 * tss) * next.Value +
|
|
|
(tss - ts) * next.TangentIn
|
|
|
);
|
|
|
}
|
|
|
prev = next;
|
|
|
}
|
|
|
return 0f;
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
}
|
|
|
}
|
|
|
|